Cargando…

Engineering tools for corrosion : design and diagnosis /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lazzari, Luciano, 1948-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Elsevier Science, 2017.
Colección:Publications (European Federation of Corrosion) ; no. 68.
European Federation of Corrosion (EFC) Series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn999697748
003 OCoLC
005 20231120010211.0
006 m o d
007 cr nnannnunuuu
008 170805s2017 enk o 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d N$T  |d IDEBK  |d OCLCQ  |d N$T  |d OPELS  |d NLE  |d OCLCQ  |d D6H  |d OCLCF  |d OCLCQ  |d UKMGB  |d WYU  |d CNCGM  |d ABC  |d NLW  |d OCLCQ  |d S2H  |d OCLCO  |d LVT  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
015 |a GBB7F4837  |2 bnb 
016 7 |a 018466210  |2 Uk 
019 |a 997421809  |a 999472964  |a 999679427  |a 1001364822  |a 1229877055 
020 |a 9780081024256  |q (electronic bk.) 
020 |a 0081024258  |q (electronic bk.) 
020 |z 008102424X 
020 |z 9780081024249 
035 |a (OCoLC)999697748  |z (OCoLC)997421809  |z (OCoLC)999472964  |z (OCoLC)999679427  |z (OCoLC)1001364822  |z (OCoLC)1229877055 
050 4 |a TJ1185 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.902  |2 23 
100 1 |a Lazzari, Luciano,  |d 1948- 
245 1 0 |a Engineering tools for corrosion :  |b design and diagnosis /  |c Luciano Lazzari. 
260 |a Duxford :  |b Elsevier Science,  |c 2017. 
300 |a 1 online resource (190 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a European Federation of Corrosion (EFC) series ;  |v no. 68 
588 0 |a Print version record. 
500 |a Includes index. 
505 0 |6 880-01  |a Front Cover; Engineering Tools for Corrosion; Copyright Page; Dedication; Contents; Author Biography; List of Symbols and Abbreviations; Units; Premise; Volumes in the EFC Series List; 1 Basic Principles; 1.1 Corrosion reactions; 1.2 Electrochemical mechanism; 1.2.1 Anodic processes; 1.2.2 Cathodic processes; 1.3 Stoichiometry (Faraday Law); 1.4 Thermodynamic conditions; 1.4.1 Reference electrodes; 1.4.2 Potential of anodic reaction, Ea; 1.4.3 Potential of cathodic reaction, Ec; 1.4.3.1 Hydrogen evolution; 1.4.3.2 Oxygen reduction; 1.5 Kinetics of aqueous corrosion; 1.5.1 Anodic overvoltage. 
505 8 |a 1.5.1.1 Passivity-related parameters for stainless steels1.5.2 Cathodic overvoltage; 1.5.2.1 Hydrogen evolution; 1.5.2.2 Oxygen reduction; 1.5.2.3 Oxygen limiting current density; 1.5.2.4 Overall cathodic current; 1.6 Summary; 1.7 Appendix; 1.7.1 Case study-design parameters for an anodic protection system; 1.7.2 Case study-design current for cathodic protection; References; Further reading; 2 Uniform Corrosion; 2.1 Model for acidic corrosion; 2.1.1 Strong acids; 2.1.2 Carbonic acid; 2.1.3 Hydrogen sulphide; 2.1.4 Organic acids; 2.1.5 Uniform corrosion of passive metals in acids. 
505 8 |a 2.2 Aerated solutions2.2.1 Oxygen limiting current density; 2.2.2 Presence of chlorine; 2.2.3 Dimensionless number approach; 2.3 Summary; 2.4 Appendix; 2.4.1 Coefficient of variation, CV; 2.4.2 Corrosion rate in carbonic acid; 2.4.2.1 Corrosion mechanism in carbonic acid; 2.4.3 Corrosion rate by organic acids; 2.4.4 Corrosion rate in acidic solutions of Fe, Zn and Cu; 2.4.5 Case study: stainless steel in acetic acid; 2.4.6 Case study: stainless steel in hot acids; 2.4.7 Dimensionless number approach vs empirical Fick equation; References; Further reading; 3 Localized Corrosion; 3.1 Macrocell. 
505 8 |a 3.4.3.3 Noble metal as cathode and active metal as anode in aerated, near neutral or alkaline electrolytes (Fig. 3.4B)3.4.3.4 Passive metal as cathode and active metal as anode in aerated, near neutral or alkaline electrolytes (Fig. 3.5); 3.4.3.5 Active nonnoble metals in oxygen-free acids (Fig. 3.6); 3.4.3.6 Noble or passive metal as cathode and active metal as anode in oxygen-free acids (Fig. 3.7); 3.4.4 Time dependency; 3.5 Differential aeration; 3.6 Intergranular corrosion; 3.6.1 Mechanism of intergranular corrosion; 3.6.2 Intergranular corrosion testing; 3.7 Summary; 3.8 Appendix. 
500 |a 3.8.1 Coefficient of variation, CV. 
520 8 |a Annotation  |b Proposes models and equations derived from theory. It includes discussions of the estimation of main corrosion parameters for corrosion rate, electrochemical constraints, thresholds limits and initiation time. The algorithms proposed are the conjugation of theory and engineering practice resulting from research and professional activities carried out by the author for almost four decades. 
650 0 |a Tools  |x Corrosion. 
650 0 |a Metals  |x Corrosion fatigue. 
650 6 |a M�etaux  |x Fatigue sous corrosion.  |0 (CaQQLa)201-0128900 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Metals  |x Corrosion fatigue  |2 fast  |0 (OCoLC)fst01018073 
776 0 8 |i Print version:  |a Lazzari, Luciano.  |t Engineering Tools for Corrosion : Design and Diagnosis.  |d San Diego : Elsevier Science, �2017  |z 9780081024249 
830 0 |a Publications (European Federation of Corrosion) ;  |v no. 68. 
830 0 |a European Federation of Corrosion (EFC) Series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780081024249  |z Texto completo 
880 8 |6 505-01/(S  |a 3.2 Throwing power3.2.1 Effective driving voltage, ΔV; 3.3 Surface area ratio; 3.4 Galvanic corrosion; 3.4.1 Driving voltage for galvanic corrosion; 3.4.1.1 Anode potential, EA; 3.4.1.2 Cathode potential, EC, for oxygen reduction; 3.4.1.3 Cathode potential, EC, for hydrogen evolution; 3.4.2 Electrolyte resistivity; 3.4.3 Case studies for galvanic corrosion; 3.4.3.1 Active nonnoble metals in aerated, near neutral or alkaline electrolytes (Fig. 3.4A); 3.4.3.2 Active noble metal as cathode and active metal as anode in aerated, near neutral or alkaline electrolytes (Fig. 3.4B).