Cargando…

Analysis and Synthesis of Polynomial Discrete-Time Systems.

Analysis and Synthesis of Polynomial Discrete-time Systems: An SOS Approach addresses the analysis and design of polynomial discrete-time control systems. The book deals with the application of Sum of Squares techniques in solving specific control and filtering problems that can be useful to solve a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Saat, Mohd Shakir Md
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Elsevier Science, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_ocn993698199
003 OCoLC
005 20231120010208.0
006 m o d
007 cr |n|||||||||
008 170714s2017 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d YDX  |d N$T  |d EBLCP  |d OCLCF  |d OPELS  |d CNCGM  |d MERER  |d UPM  |d D6H  |d GZM  |d OCLCQ  |d ESU  |d U3W  |d LQU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 993671610  |a 993765958  |a 993965435  |a 1003096108  |a 1105179631  |a 1105564385 
020 |a 0081019025  |q (ebk) 
020 |a 9780081019023 
020 |z 9780081019016 
020 |z 0081019017 
035 |a (OCoLC)993698199  |z (OCoLC)993671610  |z (OCoLC)993765958  |z (OCoLC)993965435  |z (OCoLC)1003096108  |z (OCoLC)1105179631  |z (OCoLC)1105564385 
050 4 |a TJ213 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Saat, Mohd Shakir Md. 
245 1 0 |a Analysis and Synthesis of Polynomial Discrete-Time Systems. 
264 1 |a [Place of publication not identified] :  |b Elsevier Science,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Analysis and Synthesis of Polynomial Discrete-Time Systems; Copyright; Contents; About the Authors; Preface; 1 Introduction; 1.1 Nonlinear systems; 1.2 Nonlinear discrete-time systems; 1.2.1 Discretization; 1.2.2 Brief overview on the literature of nonlinear discrete-time systems; 1.3 Polynomial systems; 1.3.1 Recent work on polynomial systems; 1.3.1.1 On the literature on controller synthesis for polynomial systems: the Lyapunov method and SOS decomposition approach; 1.3.2 Sum-of-squares (SOS) decomposition; 1.3.2.1 SOSTOOLS; 1.4 Research motivation; 1.5 Contribution of the book. 
505 8 |a 1.6 Book outline References; 2 Robust nonlinear control for polynomial discrete-time systems; 2.1 Introduction; 2.2 Main results; 2.2.1 Nonlinear control for polynomial discrete-time systems; 2.2.1.1 The integrator approach; 2.2.2 Robust nonlinear feedback control design for polynomial discrete-time systems; With parametric uncertainties; With norm-bounded uncertainties; 2.3 Numerical examples; 2.4 Conclusion; References; 3 Robust nonlinear H8 state feedback control for polynomial discrete-time systems; 3.1 Introduction; 3.2 System description and problem formulation. 
505 8 |a 3.2.1 System description3.2.2 Problem formulation; 3.3 Main results; 3.3.1 Nonlinear H8 control of polynomial discrete systems; 3.3.2 Robust nonlinear H8 control of polynomial discrete systems; 3.3.2.1 Parametric uncertainty; 3.3.2.2 Norm-bounded uncertainties; 3.4 Numerical examples; References; 4 Robust nonlinear ltering for polynomial discrete-time systems; 4.1 Introduction; 4.2 System description and de nition; 4.3 Main results; 4.3.1 Nonlinear ltering for polynomial discrete-time systems; 4.3.2 Robust nonlinear ltering for polynomial discrete-time systems; 4.4 Numerical examples. 
505 8 |a 4.5 Conclusion References; 5 Robust nonlinear H8 ltering for polynomial discrete-time systems; 5.1 Introduction; 5.2 System description and problem formulation; 5.3 Main results; 5.3.1 Nonlinear H8 ltering for polynomial discrete-time systems; 5.3.2 Robust nonlinear H8 ltering for polynomial discrete-time systems; 5.4 Numerical examples; 5.5 Conclusion; References; 6 Robust nonlinear H8 output feedback control for polynomial discrete-time systems; 6.1 Introduction; 6.2 System description and problem formulation; 6.3 Main results; 6.3.1 Nonlinear H8 output feedback control. 
505 8 |a 6.3.2 Robust nonlinear H8 output feedback control6.3.2.1 Parametric uncertainties; 6.3.2.2 Norm-bounded uncertainties; 6.4 Numerical examples; 6.5 Conclusion; References; 7 Global stabilization of fuzzy polynomial discrete-time nonlinear systems; 7.1 Introduction; 7.2 System description and problem formulation; 7.3 Main results; 7.4 Simulation examples; 7.5 Conclusion; References; 8 Global H8 control of fuzzy polynomial discrete-time nonlinear systems; 8.1 Introduction; 8.2 System description and preliminaries; 8.3 Main results; 8.4 Simulation examples; 8.5 Conclusion; References. 
520 |a Analysis and Synthesis of Polynomial Discrete-time Systems: An SOS Approach addresses the analysis and design of polynomial discrete-time control systems. The book deals with the application of Sum of Squares techniques in solving specific control and filtering problems that can be useful to solve advanced control problems, both on the theoretical side and on the practical side. Two types of controllers, state feedback controller and output feedback controller, along with topics surrounding the nonlinear filter and the H-infinity performance criteria are explored. The book also proposes a solution to global stabilization of discrete-time systems. 
650 0 |a Automatic control. 
650 0 |a Control theory. 
650 0 |a Discrete-time systems. 
650 6 |a Commande automatique.  |0 (CaQQLa)201-0035949 
650 6 |a Th�eorie de la commande.  |0 (CaQQLa)201-0012168 
650 6 |a Syst�emes �echantillonn�es.  |0 (CaQQLa)201-0027825 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a Automatic control  |2 fast  |0 (OCoLC)fst00822702 
650 7 |a Control theory  |2 fast  |0 (OCoLC)fst00877085 
650 7 |a Discrete-time systems  |2 fast  |0 (OCoLC)fst00894973 
776 0 8 |i Print version:  |z 9780081019016  |z 0081019017  |w (OCoLC)983822591 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780081019016  |z Texto completo