|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_ocn993448112 |
003 |
OCoLC |
005 |
20231120010207.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170713s2017 ne o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d IDEBK
|d EBLCP
|d OCLCF
|d OCLCQ
|d MERER
|d OCLCQ
|d UPM
|d D6H
|d OCLCQ
|d U3W
|d N$T
|d LQU
|d OCLCQ
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d LVT
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB797946
|2 bnb
|
016 |
7 |
|
|a 018377406
|2 Uk
|
019 |
|
|
|a 993687312
|a 1006805054
|a 1007088310
|a 1007389098
|a 1105181846
|a 1105563204
|a 1229748732
|
020 |
|
|
|a 0444637478
|q (electronic bk.)
|
020 |
|
|
|a 9780444637475
|q (electronic bk.)
|
020 |
|
|
|z 0444637397
|
020 |
|
|
|z 9780444637390
|
035 |
|
|
|a (OCoLC)993448112
|z (OCoLC)993687312
|z (OCoLC)1006805054
|z (OCoLC)1007088310
|z (OCoLC)1007389098
|z (OCoLC)1105181846
|z (OCoLC)1105563204
|z (OCoLC)1229748732
|
050 |
|
4 |
|a TA418.9.N35
|
072 |
|
7 |
|a TEC
|x 009000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 035000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/15
|2 23
|
100 |
1 |
|
|a Imae, Toyoko,
|d 1942-
|
245 |
1 |
0 |
|a Nanolayer research :
|b methodology and technology for green chemistry /
|c Toyoko Imae.
|
260 |
|
|
|a Amsterdam :
|b Elsevier,
|c �2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Nanolayer Research: Methodology and Technology for Green Chemistry; Copyright; Contents; Contributors; Chapter 1: Overview of Nanolayers: Formulation and Characterization Methods; 1.1. Introduction; 1.2. Formulation of Nanolayers; 1.2.1. Monolayers at Interface; 1.2.1.1. Monolayer at gas (air)-liquid interface; 1.2.1.2. Monolayer at gas-solid interface; 1.2.1.3. Monolayer at liquid-solid interface; 1.2.1.4. Monolayer at finite interface; 1.2.2. Multilayers at Interface; 1.3. Characterization Methods of Nanolayers; 1.3.1. Characterization of Nanolayers by Microscopy.
|
505 |
8 |
|
|a 1.3.1.1. Transmission electron microscope1.3.1.2. Atomic force microscope; 1.3.2. Characterization of Nanolayers by Electromagnetics; 1.3.2.1. Light scattering; 1.3.2.2. Small angle scattering; 1.3.2.3. Reflectometry; 1.3.3. Characterization of Nanolayers by Spectroscopy; 1.3.3.1. X-ray spectroscopy; 1.3.3.2. Vibration spectroscopy; 1.3.3.3. Surface plasmon resonance spectroscopy; 1.4. Conclusions; Acknowledgments; References; Chapter 2: Electrical Double Layer at Nanolayer Interface; 2.1. Introduction; 2.2. Gouy-Chapman-Stern Model for Electrical Double Layer.
|
505 |
8 |
|
|a 2.3. Electrical Double Layer Around a Planar Surface2.4. Electrical Double Layer Around Spherical and Cylindrical Surfaces; 2.4.1. Spherical Surface; 2.4.2. Cylindrical Surface; 2.5. Electrical Double Layer Across a Nanolayer of Porous Material; 2.6. Electrical Double Layer Across a Nanolayer of Polyelectrolytes; 2.7. Discrete Charge Effect; 2.8. Modified Poisson-Boltzmann Equation; 2.9. Conclusion; References; Chapter 3: Scanning Probe Microscopy Techniques for Modern Nanomaterials; 3.1. Introduction; 3.2. Submolecular Imaging of Two-Dimensional Supramolecular Systems by SPM.
|
505 |
8 |
|
|a 3.3. On-Site STM Imaging of Covalently Bonded 2D Supramolecular Structures by Surface-Mediated Selective Polycondensation3.4. Surface Characterization of 2D Nanomaterials by AFM and KPFM; 3.5. Characterizations of Advanced Materials for Polymer Electrolyte Fuel Cells by SPM Techniques; 3.6. Recent Thin Film Organic and/or Inorganic Solar Cells; 3.7. KPFM for Determination of the Work Function in Solar Cells; 3.8. Morphology and Work Function Distribution of Bulk Heterojunction Solar Cells; 3.9. Local Photovoltaic Characteristics of Bulk Heterojunction Solar Cells.
|
505 |
8 |
|
|a 3.10. Local Photovoltaic Inorganic and Organic/Inorganic Hybrid Solar Cells3.11. Conclusions and Outlook; References; Chapter 4: Surface-Enhanced Spectroscopy for Surface Characterization; 4.1. Introduction; 4.2. Types of Surface-Enhanced Spectroscopies; 4.3. Metallic Nanostructures for Surface Enhanced Spectroscopies; 4.4. Physicochemical Phenomenon of Materials in the Vicinity of Metal Nanostructures; 4.5. Practical Methods for Surface-Enhanced Spectroscopies; 4.6. Recent Applications: Beyond the Spectroscopies; 4.7. Conclusions; References.
|
650 |
|
0 |
|a Nanostructured materials.
|
650 |
|
0 |
|a Green chemistry.
|
650 |
|
6 |
|a Nanomat�eriaux.
|0 (CaQQLa)201-0258061
|
650 |
|
6 |
|a Chimie verte.
|0 (CaQQLa)201-0337434
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Engineering (General)
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Green chemistry
|2 fast
|0 (OCoLC)fst00912867
|
650 |
|
7 |
|a Nanostructured materials
|2 fast
|0 (OCoLC)fst01032630
|
776 |
0 |
8 |
|i Print version:
|a Imae, Toyoko, 1942-
|t Nanolayer research.
|d Amsterdam : Elsevier, �2017
|z 0444637397
|z 9780444637390
|w (OCoLC)962351038
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780444637390
|z Texto completo
|