Algae based polymers, blends, and composites : chemistry, biotechnology and materials science /
Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2017]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Algae Based Polymers, Blends, and Composites; Algae Based Polymers, Blends, and Composites; Copyright; Dedication; Contents; List of Contributors; About the Editors; Foreword; Preface; 1
- Algal-Based Biopolymers; 1.1 INTRODUCTION; 1.2 APPLICATION AND PRODUCTION OF BIO-BASED POLYMERS; 1.2.1 APPLICATION AND PRODUCTION OF BIO-BASED POLYSACCHARIDES; 1.2.1.1 Polysaccharides Derived From Algae; 1.2.1.1.1 Agar; 1.2.1.1.2 Ulvan; 1.2.1.1.3 Galactan; 1.2.1.1.4 Fucan; 1.2.1.1.5 Alginates; 1.2.1.1.6 Agarose; 1.2.1.1.7 Carrageenans; 1.2.1.1.8 Calcium Spirulan; 1.2.1.1.9 Naviculan
- 1.2.1.2 Polysaccharides Derived From Plants1.2.1.2.1 Cellulose; 1.2.1.2.2 Starch; 1.2.1.2.3 Inulin; 1.2.1.2.4 Pectins; 1.2.1.3 Polysaccharides Derived From Animals; 1.2.1.4 Polysaccharides Derived From Microorganisms; 1.2.2 APPLICATION AND PRODUCTION OF BIO-BASED POLYHYDROXYALKANOATES; 1.2.2.1 PHASCL (Short-Chain Length Polyhydroxyalkanoates); 1.2.2.2 PHAMCL (Medium-Chain Length Polyhydroxyalkanoates); 1.2.2.3 Rarer Polyhydroxyalkanoates; 1.2.3 APPLICATION AND PRODUCTION OF BIO-BASED PROTEINS AND POLY(AMINO ACID)S; 1.2.4 APPLICATION AND PRODUCTION OF BIO-BASED LIGNINS
- 1.2.5 APPLICATION AND PRODUCTION OF BIO-BASED MONOMERS1.2.5.1 Lactic Acid; 1.2.5.2 Succinic Acid; 1.2.5.3 1,3-Propanediol; 1.3 FUTURE PERSPECTIVE; REFERENCES; 2
- Synthetic Materials and the Problems They Pose; 2.1 INTRODUCTION; 2.2 PLASTIC DEBRIS; 2.2.1 AESTHETICS; 2.2.2 ENTANGLEMENT; 2.2.3 INGESTION OF PLASTICS; 2.2.4 THE THREATS FROM PLASTIC POLLUTION TO MARINE BIOTA; 2.3 IMPACTS OF PLASTICS ON AGRICULTURE; 2.4 SUBSTITUTE OF PLASTIC BAGS; 2.4.1 NATURAL FIBER BAGS; 2.4.2 BENEFITS AND ADVANTAGES OF JUTE BAGS; 2.4.3 BIODEGRADABLE PLASTIC BAGS; 2.5 PYROLYSIS
- 2.6 BIODEGRADATION OF THERMOPLASTIC POLYOLEFINS2.6.1 POLYETHYLENE; 2.7 RECYCLING OF POLYETHYLENE TEREPHTHALATE; 2.7.1 SOLVENT-ASSISTED GLYCOLYSIS; 2.7.2 CHEMICAL RECYCLING OF POLYETHYLENE TEREPHTHALATE; 2.8 RECYCLING OF POLYVINYL CHLORIDE; 2.8.1 CHEMICAL RECYCLING; 2.8.2 POLYVINYL CHLORIDE TO FUEL; 2.9 CONCLUSION AND FUTURE PROSPECTS; REFERENCES; 3
- Microalgae: A Promising Feedstock for Energy and High-Value Products; 3.1 MICROALGAE: POTENTIAL AND PROPERTIES; 3.2 MICROALGAE: POTENTIAL FEEDSTOCK FOR BIOENERGY; 3.2.1 BIOALCOHOLS; 3.2.2 BIODIESEL; 3.2.3 BIOGAS; 3.2.4 BIOHYDROGEN
- 3.2.5 ADVANCED BIOFUELS3.3 BIOLOGICAL PIGMENTS AND MEDICINES; 3.4 BIOCHAR PRODUCTION; 3.5 AMINO ACIDS AND POULTRY FEED; REFERENCES; 4
- Origin of Algae and Their Plastids; 4.1 INTRODUCTION; 4.2 EVOLUTION OF OXYGENIC PHOTOSYNTHESIS AND PRIMARY ENDOSYMBIOSIS; 4.3 SECONDARY ENDOSYMBIOSIS; 4.3.1 EUGLENIDS; 4.3.2 CHLORARACHNIOPHYTES; 4.3.3 CRYPTOMONADS; 4.3.4 HAPTOPHYTES; 4.3.5 HETEROKONTS; 4.3.6 DINOFLAGELLATES; 4.3.7 APICOMPLEXA; 4.4 TERTIARY AND SERIAL SECONDARY ENDOSYMBIOSIS; 4.5 APICOMPLEXA AND DINOFLAGELLATES PLASTIDS; 4.6 CHARACTERISTICS AND PROPERTIES OF ALGAL STRAINS; 4.6.1 TYPES OF ALGAE