Microscopy methods in nanomaterials characterization.
Annotation
Clasificación: | Libro Electrónico |
---|---|
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
Elsevier,
2017.
|
Colección: | Micro & nano technologies.
Nanomaterials characterization techniques series ; v. 1. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Microscopy Methods in Nanomaterials Characterization; Microscopy Methods in Nanomaterials Characterization; Copyright; Contents; List of Contributors; Editor Biographies; 1
- Scanning Electron Microscopy, ESEM, and X-ray Microanalysis; 1.1 INTRODUCTION; 1.2 SCANNING ELECTRON MICROSCOPY; 1.2.1 Principle; 1.2.2 Vacuum System; 1.2.3 Electron Beam Generation and Electron Optics; 1.2.3.1 Electron Beam Generation; 1.2.4 Signals, Detectors, and Image Formation; 1.2.5 Sample Preparation; 1.2.5.1 Mounting; 1.2.5.2 Fracture Surfaces; 1.2.5.3 Microtomed Sections and Cross Sections
- 1.2.5.4 Target Preparation1.2.5.5 Focused Ion Beam; 1.2.5.6 Drying; 1.2.5.7 Conductive Coating; 1.2.6 Examples; 1.3 ENERGY DISPERSIVE X-RAY MICROANALYSIS; 1.3.1 Signal Generation and Detection; 1.3.2 Examples; 1.4 ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY; 1.4.1 Principle and Advantages; 1.4.2 Instrumentation; 1.4.3 Examples; 1.5 CRYO SCANNING ELECTRON MICROSCOPY; 1.5.1 Instrumentation; 1.5.2 Examples; 1.6 LOW-VOLTAGE AND HIGH-RESOLUTION SCANNING ELECTRON MICROSCOPY; 1.6.1 Low-Voltage Scanning Electron Microscopy and Inlens Detectors; 1.6.2 Helium Ion Microscopy; REFERENCES
- 2
- Synthesis of Scanning Electron Microscopy Images of Nanostructures by High-Performance Monte Carlo Modeling2.1 INTRODUCTION; 2.2 MONTE CARLO MODELING OF SECONDARY-ELECTRON EMISSION AT LOW ENERGIES IN DIELECTRICS; 2.2.1 Elastic Scattering Cross Section; 2.2.2 Inelastic Cross Section; 2.2.2.1 Electron-Electron Interactions: Calculation of the Energy-Loss Function; 2.2.2.2 Electron-Phonon Scattering; 2.2.2.3 Polaron Trapping; 2.2.2.4 Quantum-Mechanical Surface Barrier Treatment; 2.2.3 The Monte Carlo Simulation Scheme; 2.2.3.1 Angle After an Elastic Scattering Event
- 2.2.3.2 Angle and Energy Loss After an Electron-Electron Scattering Event2.2.3.3 Angle After an Electron-Phonon Scattering Event; 2.2.3.4 Transmission Through a Barrier; 2.3 EFFICIENT SIMULATION OF COMPLEX THREE-DIMENSIONAL GEOMETRIES; 2.3.1 The Silicon Box; 2.3.1.1 The Silicon Box: Basic Body; 2.3.1.2 The Silicon Box: Unstructured Grid and Voxelization; 2.3.2 Basic Fin Field Effect Transistor Structure; 2.3.3 Three-Dimensional Effects in a PMMA Mask at Nanometer Scale; 2.3.4 Parallel Computing in Sub-10 nm Structures; 2.4 METROLOGY OF NANOSTRUCTURES BY MONTE CARLO MODELING OF SEM IMAGES
- 2.4.1 Metrics for Roughness2.4.2 Critical Dimension Extraction Techniques From SEM Line Scans; 2.4.2.1 Model-Based Library Approach; 2.4.2.2 Contour Technique; 2.4.3 Contact Hole With Line-Edge Roughness; 2.4.3.1 The Simulation Model; 2.4.3.2 CD Extraction by MBLA and by the Edge Contrast; 2.4.4 Polymethyl Methacrylate Patterns With LER; 2.4.4.1 Simulation Model and Parameters; 2.4.4.2 Critical Dimension Extraction by Model-Based Library Approach; 2.4.4.3 LER/LWR Analysis by the Model-Based Library Approach; 2.4.4.4 LER/LWR Analysis From Contour