Cargando…

Biomechanics of Living Organs Hyperelastic Constitutive Laws for Finite Element Modeling.

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Payan, Yohan, Ohayon, Jacques
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Academic Pr 2017.
Colección:Academic Press series in biomedical engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 SCIDIR_ocn990035056
003 OCoLC
005 20231120010202.0
006 m o d
007 cr |n|||||||||
008 170613s2017 xx ob 001 0 eng d
010 |a  2017446451 
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d IDEBK  |d EBLCP  |d OPELS  |d OCLCF  |d MERER  |d OCLCQ  |d UPM  |d OCLCQ  |d GGVRL  |d D6H  |d OCLCQ  |d U3W  |d WYU  |d OCLCA  |d OCLCQ  |d LQU  |d OCLCQ  |d UKMGB  |d OCLCQ  |d OCLCO  |d S2H  |d OCLCO  |d LVT  |d VT2  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB778006  |2 bnb 
016 7 |a 101712877  |2 DNLM 
016 7 |a 018333033  |2 Uk 
019 |a 990121895  |a 990365277  |a 992943422  |a 1066526127  |a 1105190530  |a 1105573120  |a 1229605694  |a 1235829629  |a 1264868939  |a 1311347668 
020 |a 9780128040607  |q (electronic bk.) 
020 |a 0128040602  |q (electronic bk.) 
020 |z 9780128040096 
020 |z 0128040092 
035 |a (OCoLC)990035056  |z (OCoLC)990121895  |z (OCoLC)990365277  |z (OCoLC)992943422  |z (OCoLC)1066526127  |z (OCoLC)1105190530  |z (OCoLC)1105573120  |z (OCoLC)1229605694  |z (OCoLC)1235829629  |z (OCoLC)1264868939  |z (OCoLC)1311347668 
050 4 |a R856. 
060 4 |a 2017 G-823 
060 4 |a QT 34.5 
072 7 |a HEA  |x 012000  |2 bisacsh 
072 7 |a HEA  |x 020000  |2 bisacsh 
072 7 |a MED  |x 004000  |2 bisacsh 
072 7 |a MED  |x 101000  |2 bisacsh 
072 7 |a MED  |x 109000  |2 bisacsh 
072 7 |a MED  |x 029000  |2 bisacsh 
072 7 |a MED  |x 040000  |2 bisacsh 
072 7 |a MED  |x 092000  |2 bisacsh 
082 0 4 |a 610.28  |2 23 
245 0 0 |a Biomechanics of Living Organs  |b Hyperelastic Constitutive Laws for Finite Element Modeling. 
260 |b Academic Pr  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Academic Press series in biomedical engineering 
505 0 |a Front Cover; Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling; Copyright; Contents; Contributors; Preface; Part 1: Constitutive laws for biological living tissues; Chapter 1: Hyperelasticity Modeling for Incompressible Passive Biological Tissues; 1. Introduction; 2. Mechanical Formulation; 2.1. Description of the Deformation; 2.2. Strain-Stress Relationships; 2.3. Stability; 3. Constitutive Equations for Soft Biological Tissues; 3.1. Introduction to Anisotropy; 3.2. Green-Lagrange Tensor Components to Describe Anisotropy. 
505 8 |a 3.3. Strain Invariants Formulation3.3.1. Classical formulation; 3.3.2. Coupling influence; 4. About Some Specific Constitutive Equations; 4.1. Transversely Isotropic Model of Guccione et al.; 4.2. HGO Orthotropic Model; 4.3. About the Two Models; 5. How to Account for a Kinematics Constraint in a Constitutive Law?; 6. Passive Hyperelastic SEDFs Used in the Book Chapters; 7. Discussion; 8. Conclusion; References; Chapter 2: Hyperelastic Models for Contractile Tissues: Application to Cardiovascular Mechanics; 1. Introduction. 
505 8 |a 2. Introductory Notions of Nonlinear Theory of Elasticity and Notations3. Modeling the Contractile Response With the Active-Stress Formalism; 4. Modeling the Contractile Response With the Active-Strain Formalism; 5. Strain Energy Density Functions Used for the Illustration of the Two Approaches; 5.1. Mechanical Behavior of the Myocardium; 5.2. Mechanical Behavior of the Coronary Arterial Wall; 6. Biomechanical Problems and Modeling Issues; 6.1. Problem 1: Vascular Tone and Residual Stress in Arteries; 6.2. Problem 2: Equibiaxial Stretching of Myocardial Tissue During Contraction. 
505 8 |a 6.3. Problem 3: Combining Hill Model With Starlings Law for Myocardial Contraction7. Concluding Remarks; Appendix A; Appendix B; References; Chapter 3: Viscohyperelastic Strain Energy Function; 1. Introduction; 2. Constitutive Model; 2.1. Dissipation Potential Theoretical Framework; 2.2. Short-Time Memory, Isotropic and Isothermal Case Study; 3. Novel Polyvalent Dissipation Potential; 4. Identification of the Polyvalent Dissipation Potential; 5. Application to the Annulus Fibrosus; 5.1. Specimen Preparation; 5.2. Experimental Setup; 5.3. Data Analysis; 5.4. Results. 
505 8 |a 5.5. Constitutive Modeling and Identification6. Discussion; Appendix. Numerical Implementation; References; Chapter 4: Constitutive Formulations for Soft Tissue Growth and Remodeling; 1. Introduction; 2. Mechanobiology; 3. Mechanobiological Constitutive Equations; General Considerations; 3.1. Kinematic Growth Models; 3.2. Constrained Mixture Models; 3.3. Homogenized Constrained Mixture Models; 4. Illustrative Examples; 4.1. Kinematic Model of Arterial Growth; 4.2. Kinematic Model of Cardiac Growth and Remodeling; 4.3. Kinematic Model of Skin Growth. 
520 |a Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. 
504 |a Includes bibliographical references and index. 
650 0 |a Biomedical engineering. 
650 0 |a Biomedical materials. 
650 1 2 |a Biomechanical Phenomena  |0 (DNLM)D001696 
650 6 |a G�enie biom�edical.  |0 (CaQQLa)201-0021888 
650 6 |a Biomat�eriaux.  |0 (CaQQLa)201-0025723 
650 7 |a biomedical engineering.  |2 aat  |0 (CStmoGRI)aat300250642 
650 7 |a HEALTH & FITNESS  |x Holism.  |2 bisacsh 
650 7 |a HEALTH & FITNESS  |x Reference.  |2 bisacsh 
650 7 |a MEDICAL  |x Alternative Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Atlases.  |2 bisacsh 
650 7 |a MEDICAL  |x Essays.  |2 bisacsh 
650 7 |a MEDICAL  |x Family & General Practice.  |2 bisacsh 
650 7 |a MEDICAL  |x Holistic Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Osteopathy.  |2 bisacsh 
650 7 |a Biomedical engineering  |2 fast  |0 (OCoLC)fst00832568 
650 7 |a Biomedical materials  |2 fast  |0 (OCoLC)fst00832586 
700 1 |a Payan, Yohan. 
700 1 |a Ohayon, Jacques. 
776 0 8 |i Print version:  |z 9780128040096  |z 0128040092  |w (OCoLC)960844691 
830 0 |a Academic Press series in biomedical engineering. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128040096  |z Texto completo