Desalination sustainability : a technical, socioeconomic, and environmental approach /
Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach presents a technical, socioeconomical, and environmental approach that guides researchers and technology developers on how to quantify the energy efficiency of a proposed desalination process using thermodynamics-bas...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2017]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach; Copyright; Contents; Contributors; Preface; Chapter 1: Introduction: What is Sustainable Desalination?; 1. Desalination and the Growing Water Security Concerns; 1.1. Evolution of Desalination Technology; 2. Environmental Impact of Desalination: Current Status and Mitigation Approaches; 2.1. Desalination and Global Energy Depletion; 2.2. Water Intake and Brine Discharge; 3. Economic Sustainability of Desalination; 3.1. The Financial Aspects of Desalination; 3.2. Mega-Scale Desalination.
- 3.3. Innovation as a Driver for Cost Reduction4. Society and Desalination; 4.1. Case Studies; 4.1.1. The Wonthaggi Desalination Plant, Victoria, Australia; 4.1.2. The Singapore NEWater Project; 4.1.3. The Case of the City of San Diego, California; 4.2. Main Issues Affecting People's Attitudes Toward Desalination; 5. Conclusion; References; Further Reading; Chapter 2: Membrane-Based Desalination Technology for Energy Efficiency and Cost Reduction; 1. Trends and Limitations of Leading Desalination Technologies; 1.1. Trends of Thermal Desalination Processes.
- 1.2. Trends of SWRO Desalination Processes1.2.1. The Development of Technology and Devices for Conventional RO Process; 1.2.2. Novel SWRO Configuration Design; 2. Novel Membrane-Based Desalination Technologies for Reducing Desalination Cost; 2.1. Membrane Distillation Technology; 2.1.1. MD Overview; 2.1.2. Membrane Classification; 2.1.2.1. Direct Contact Membrane Distillation; 2.1.2.2. Sweeping Gas Membrane Distillation; 2.1.2.3. Vacuum Membrane Distillation; 2.1.2.4. Air-Gap Membrane Distillation; 2.1.2.5. Permeate-Gap Membrane Distillation; 2.1.2.6. Conductive Gap Membrane Distillation.
- 2.1.3. MD Membranes2.1.3.1. Membrane Fabrication; 2.1.4. Application and Commercialization of MD; 2.2. Forward Osmosis; 2.2.1. FO Overview; 2.2.2. Classification of Osmotic Processes; 2.2.3. FO Membrane; 2.2.4. Application and Commercialization of FO; 2.3. Pressure-Retarded Osmosis Technology; 2.3.1. PRO Overview; 2.3.2. PRO Membrane and Performance; 2.3.3. Application and Commercialization of PRO; 2.4. Novel Membrane-Based Technologies; 2.4.1. Nanocomposite Membranes; 2.4.2. Aquaporin Membranes; 2.4.3. Carbon Nanotube Membranes; 2.4.4. Graphene-Based Membranes.
- 2.4.5. Energy-Efficient RO Desalination Process3. Hybrid Desalination Technology for Energy Efficiency and Cost Reduction; 3.1. Limitation of FO Processes; 3.2. FO Hybrid Processes; 3.2.1. FO-RO Hybrid Process; 3.2.2. FO-MSF/MED Hybrid Process; 3.2.3. FO-Electrodialysis Hybrid Process; 3.3. Limitations of MD Technologies; 3.4. MD-Based Hybrid Technologies; 3.4.1. RO-MD Hybrid Process; 3.4.2. FO-MD; 3.4.3. MD-Crystallizer; 3.4.4. Renewable Energy Driven MD; 4. Summary; References; Further Reading; Chapter 3: Autonomous Solar-Powered Desalination Systems for Remote Communities; 1. Introduction.