Cargando…

Low-rank models in visual analysis : theories, algorithms, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lin, Zhouchen (Autor), Zhang, Hongyang (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2017]
Colección:Computer vision and pattern recognition series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn989872332
003 OCoLC
005 20231120010201.0
006 m o d
007 cr cnu|||unuuu
008 170612s2017 enk ob 001 0 eng d
010 |a  2017446912 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d IDEBK  |d EBLCP  |d UIU  |d OCLCF  |d OPELS  |d OCLCQ  |d UPM  |d NRC  |d D6H  |d U3W  |d UKMGB  |d WYU  |d OCLCO  |d ABC  |d LQU  |d OCLCQ  |d S2H  |d VT2  |d OCLCO  |d OCL  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB7A1616  |2 bnb 
016 7 |a 018373509  |2 Uk 
019 |a 989987285  |a 1066618305  |a 1105181558  |a 1105566392  |a 1235844776 
020 |a 9780128127322  |q (electronic bk.) 
020 |a 0128127325  |q (electronic bk.) 
020 |z 9780128127315 
020 |z 0128127317 
035 |a (OCoLC)989872332  |z (OCoLC)989987285  |z (OCoLC)1066618305  |z (OCoLC)1105181558  |z (OCoLC)1105566392  |z (OCoLC)1235844776 
050 4 |a TA1634 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3/7  |2 23 
100 1 |a Lin, Zhouchen,  |e author. 
245 1 0 |a Low-rank models in visual analysis :  |b theories, algorithms, and applications /  |c Zhouchen Lin, Hongyang Zhang. 
264 1 |a London :  |b Academic Press, an imprint of Elsevier,  |c [2017] 
264 4 |c �2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computer vision and pattern recognition series 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Front Cover; Low-Rank Models in Visual Analysis; Copyright; Contents; About the Authors; Preface; Acknowledgment; Notations; 1 Introduction; References; 2 Linear Models; 2.1 Single Subspace Models; 2.2 Multi-Subspace Models; 2.3 Theoretical Analysis; 2.3.1 Exact Recovery; 2.3.1.1 Incoherence Conditions; 2.3.1.2 Exact Recoverability of MC; 2.3.1.3 Exact Recoverability of RPCA; 2.3.1.4 Exact Recoverability of RPCA with Missing Values; 2.3.1.5 Exact Recoverability of Outlier Pursuit; 2.3.1.6 Exact Recoverability of Outlier Pursuit with Missing Values; 2.3.1.7 Exact Recoverability of LRR 
505 8 |a 2.3.1.8 Exact Recoverability of Robust LRR and Robust Latent LRR2.3.2 Closed-Form Solutions; 2.3.3 Block-Diagonal Structure; References; 3 Nonlinear Models; 3.1 Kernel Methods; 3.2 Laplacian Based Methods; 3.3 Locally Linear Representation; 3.4 Transformation Invariant Clustering; References; 4 Optimization Algorithms; 4.1 Convex Algorithms; 4.1.1 Accelerated Proximal Gradient; 4.1.2 Frank-Wolfe Algorithm; 4.1.3 Alternating Direction Method; 4.1.3.1 Applying ADM to RPCA; 4.1.3.2 Experiments; 4.1.4 Linearized Alternating Direction Method with Adaptive Penalty; 4.1.4.1 Convergence Analysis 
505 8 |a 4.1.4.2 Applying LADMAP to LRR4.1.4.3 Experiments; 4.1.5 (Proximal) Linearized Alternating Direction Method with Parallel Splitting and Adaptive Penalty; 4.2 Nonconvex Algorithms; 4.2.1 Generalized Singular Value Thresholding; 4.2.2 Iteratively Reweighted Nuclear Norm Algorithm; 4.2.2.1 Convergence Analysis; 4.2.3 Truncated Nuclear Norm Minimization; 4.2.4 Iteratively Reweighted Least Squares; 4.2.4.1 Convergence Analysis; 4.2.4.2 Experiments; 4.2.5 Factorization Method; 4.3 Randomized Algorithms; 4.3.1 l1 Filtering Algorithm; Recovery of a Seed Matrix; l1 Filtering 
505 8 |a 4.3.1.1 Complexity Analysis4.3.1.2 Experiments; 4.3.2 l2,1 Filtering Algorithm; Recovery of a Seed Matrix; l2,1 Filtering; 4.3.2.1 Theoretical Analysis; 4.3.2.2 Complexity Analysis; 4.3.2.3 Experiments; 4.3.3 Randomized Algorithm for Relaxed Robust LRR; 4.3.3.1 Complexity Analysis; 4.3.3.2 Experiments; 4.3.4 Randomized Algorithm for Online Matrix Completion; References; 5 Representative Applications; 5.1 Video Denoising [19]; 5.1.1 Implementation Details; Patch Matching with Outlier Removal; Denoising Patch Matrix; From Denoised Patch to Denoised Image/Video; 5.1.2 Experiments 
505 8 |a 5.2 Background Modeling [2]5.2.1 Implementation Details; 5.2.2 Experiments; 5.3 Robust Alignment by Sparse and Low-Rank (RASL) Decomposition [42]; 5.3.1 Implementation Details; 5.3.2 Experiments; 5.4 Transform Invariant Low-Rank Textures (TILT) [58]; 5.5 Motion and Image Segmentation [30,29,4]; Single-Feature Case; Multi-Feature Case; 5.6 Image Saliency Detection [21]; Single-Feature Case; Multiple-Feature Case; 5.7 Partial-Duplicate Image Search [54]; 5.7.1 Implementation Details; Modeling Global Geometric Consistency with a Low-Rank Matrix; Modeling False Matches with a Sparse Matrix 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer algorithms. 
650 0 |a Algorithms. 
650 6 |a Vision par ordinateur.  |0 (CaQQLa)201-0074889 
650 6 |a Reconnaissance des formes (Informatique)  |0 (CaQQLa)201-0028094 
650 6 |a Algorithmes.  |0 (CaQQLa)201-0001230 
650 7 |a algorithms.  |2 aat  |0 (CStmoGRI)aat300065585 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Algorithms  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Computer algorithms  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Computer vision  |2 fast  |0 (OCoLC)fst00872687 
650 7 |a Pattern recognition systems  |2 fast  |0 (OCoLC)fst01055266 
700 1 |a Zhang, Hongyang,  |e author. 
776 0 8 |i Print version:  |a Lin, Zhouchen.  |t Low-rank models in visual analysis.  |d London : Academic Press, an imprint of Elsevier, [2017]  |z 0128127317  |z 9780128127315  |w (OCoLC)981968659 
830 0 |a Computer vision and pattern recognition series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128127315  |z Texto completo