|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
SCIDIR_ocn988941507 |
003 |
OCoLC |
005 |
20231120010159.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170605s2017 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d N$T
|d EBLCP
|d OPELS
|d CNCGM
|d OCLCF
|d MERER
|d YDX
|d OCLCQ
|d OTZ
|d D6H
|d U3W
|d OCLCQ
|d AU@
|d OCLCQ
|d S2H
|d OCLCO
|d AAA
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 989045574
|a 1000271919
|
020 |
|
|
|a 9780081023594
|q (electronic bk.)
|
020 |
|
|
|a 0081023596
|q (electronic bk.)
|
020 |
|
|
|z 9781785482274
|
020 |
|
|
|z 1785482270
|
035 |
|
|
|a (OCoLC)988941507
|z (OCoLC)989045574
|z (OCoLC)1000271919
|
050 |
|
4 |
|a TA660.P6
|
072 |
|
7 |
|a TEC
|x 009020
|2 bisacsh
|
082 |
0 |
4 |
|a 624.1776
|2 23
|
100 |
1 |
|
|a Van, Anh Le,
|e author.
|
245 |
1 |
0 |
|a Nonlinear theory of elastic plates /
|c Ann Le van.
|
264 |
|
1 |
|a London, UK :
|b ISTE Press ;
|a Kidlington, Oxford, UK :
|b Elsevier,
|c 2017.
|
300 |
|
|
|a 1 online resource :
|b illustration
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed June 8, 2017).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Nonlinear Theory of Elastic Plates; Copyright; Contents; Preface; Why the nonlinear framework?; Synopsis of the book; Chapter 1. Fundamentals of Tensor Theory; 1.1. Tensor algebra; 1.2. Tensor analysis; Chapter 2. Initial Position of a Plate; 2.1. Initial position of the mid-surface of the plate; 2.2. Initial position of the plate; 2.3. Covariant derivative on a surface; 2.4. Divergence theorem; Chapter 3. Cosserat Plate Theory; 3.1. Current position of the plate mid-surface; 3.2. Current position of the plate -- Displacement field; 3.3. Displacement gradient; 3.4. Strain tensor
|
505 |
8 |
|
|a 3.5. Velocity field3.6. Principle of Virtual Power (PVP); 3.7. Virtual velocity field; 3.8. Virtual velocity gradient; 3.9. Virtual power of inertia forces; 3.10. Virtual power of internal forces; 3.11. Virtual power of external forces; 3.12. Equations of motion and boundary conditions; 3.13. Static problems; 3.14. Another method to obtain the equations; 3.15. Overview of the equations and unknowns; Chapter 4. Reissner-Mindlin Plate Theory; 4.1. Current position of the plate mid-surface; 4.2. Current position of the plate -- Displacement field; 4.3. Gradient of displacement; 4.4. Strain tensor
|
505 |
8 |
|
|a 4.5. Velocity field4.6. Virtual velocity field; 4.7. Virtual power of inertia forces; 4.8. Virtual power of internal forces; 4.9. Virtual power of external forces; 4.10. Equations of motion and boundary conditions; 4.11. Note on couples; 4.12. Static problems; 4.13. Overview of equations and unknowns; Chapter 5. Kirchhoff-Love Plate Theory; 5.1. Current position of the plate mid-surface; 5.2. Current position of the plate -- Displacement field; 5.3. Strain tensor; 5.4. Velocity field; 5.5. Virtual velocity field; 5.6. Virtual powers of inertia forces; 5.7. Virtual power of internal forces
|
505 |
8 |
|
|a 6.9. Review of the hypotheses usedChapter 7. Linearized Kirchhoff-Love Plate Theory; 7.1. Statement of the problem; 7.2. Linearization principle; 7.3. Linearization of the vectors of the current natural basis; 7.4. Linearized current curvatures; 7.5. Linearized current Christoffel symbols; 7.6. Linearized strain tensor; 7.7. Linearized integrated constitutive laws; 7.8. Linearized governing equations and boundary conditions -- Vibrations of a pre-stressed plate; 7.9. Overview of the equations and unknowns; 7.10. Displacement equations; 7.11. Equilibrium of a pre-stressed plate
|
520 |
|
|
|a Provides the theoretical materials necessary for the three plate models--Cosserat plates, Reissner-Mindlin plates and Kirchhoff-Love plates--in the context of finite elastic deformations. One separate chapter is devoted to the linearized theory of Kirchhoff-Love plates, which allows for the study of vibrations of a pre-stressed plate and the static buckling of a plate. All mathematical results in the tensor theory in curvilinear coordinates necessary to investigate the plate theory in finite deformations are provided, making this a self-contained resource.--Provided by publisher.
|
650 |
|
0 |
|a Plates (Engineering)
|x Vibration
|x Mathematical models.
|
650 |
|
0 |
|a Cylinders
|x Vibration
|x Mathematical models.
|
650 |
|
0 |
|a Nonlinear oscillations
|x Mathematical models.
|
650 |
|
6 |
|a Oscillations non lin�eaires
|0 (CaQQLa)201-0056434
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Civil
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Cylinders
|x Vibration
|x Mathematical models
|2 fast
|0 (OCoLC)fst00886055
|
650 |
|
7 |
|a Nonlinear oscillations
|x Mathematical models
|2 fast
|0 (OCoLC)fst01038805
|
650 |
|
7 |
|a Plates (Engineering)
|x Vibration
|x Mathematical models
|2 fast
|0 (OCoLC)fst01066800
|
776 |
0 |
8 |
|i Print version:
|a Van, Anh Le.
|t Nonlinear theory of elastic plates.
|d London, UK : ISTE Press ; Kidlington, Oxford, UK : Elsevier, 2017
|z 1785482270
|z 9781785482274
|w (OCoLC)973806047
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781785482274
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 5.8. Virtual power of external forces5.9. Equations of motion and boundary conditions; 5.10. Static problems; 5.11. Overview of equations and unknowns; 5.12. Example: Kirchhoff-Love plate in cylindrical bending; Chapter 6. Constitutive Law of Plates; 6.1. Hyperelastic 3D constitutive law; 6.2. Strains in terms of the Z-coordinate; 6.3. Stress resultants for Cosserat plates; 6.4. Zero normal stress hypothesis σ33 = 0; 6.5. Plane stress state; 6.6. Reduced constitutive law; 6.7. Stress resultants for Reissner-Mindlin plates; 6.8. Stress resultants for Kirchhoff-Love plates
|