Cargando…

Nonlinear theory of elastic plates /

Provides the theoretical materials necessary for the three plate models--Cosserat plates, Reissner-Mindlin plates and Kirchhoff-Love plates--in the context of finite elastic deformations. One separate chapter is devoted to the linearized theory of Kirchhoff-Love plates, which allows for the study of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Van, Anh Le (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Kidlington, Oxford, UK : ISTE Press ; Elsevier, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn988941507
003 OCoLC
005 20231120010159.0
006 m o d
007 cr cnu|||unuuu
008 170605s2017 enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IDEBK  |d N$T  |d EBLCP  |d OPELS  |d CNCGM  |d OCLCF  |d MERER  |d YDX  |d OCLCQ  |d OTZ  |d D6H  |d U3W  |d OCLCQ  |d AU@  |d OCLCQ  |d S2H  |d OCLCO  |d AAA  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 989045574  |a 1000271919 
020 |a 9780081023594  |q (electronic bk.) 
020 |a 0081023596  |q (electronic bk.) 
020 |z 9781785482274 
020 |z 1785482270 
035 |a (OCoLC)988941507  |z (OCoLC)989045574  |z (OCoLC)1000271919 
050 4 |a TA660.P6 
072 7 |a TEC  |x 009020  |2 bisacsh 
082 0 4 |a 624.1776  |2 23 
100 1 |a Van, Anh Le,  |e author. 
245 1 0 |a Nonlinear theory of elastic plates /  |c Ann Le van. 
264 1 |a London, UK :  |b ISTE Press ;  |a Kidlington, Oxford, UK :  |b Elsevier,  |c 2017. 
300 |a 1 online resource :  |b illustration 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed June 8, 2017). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Nonlinear Theory of Elastic Plates; Copyright; Contents; Preface; Why the nonlinear framework?; Synopsis of the book; Chapter 1. Fundamentals of Tensor Theory; 1.1. Tensor algebra; 1.2. Tensor analysis; Chapter 2. Initial Position of a Plate; 2.1. Initial position of the mid-surface of the plate; 2.2. Initial position of the plate; 2.3. Covariant derivative on a surface; 2.4. Divergence theorem; Chapter 3. Cosserat Plate Theory; 3.1. Current position of the plate mid-surface; 3.2. Current position of the plate -- Displacement field; 3.3. Displacement gradient; 3.4. Strain tensor 
505 8 |a 3.5. Velocity field3.6. Principle of Virtual Power (PVP); 3.7. Virtual velocity field; 3.8. Virtual velocity gradient; 3.9. Virtual power of inertia forces; 3.10. Virtual power of internal forces; 3.11. Virtual power of external forces; 3.12. Equations of motion and boundary conditions; 3.13. Static problems; 3.14. Another method to obtain the equations; 3.15. Overview of the equations and unknowns; Chapter 4. Reissner-Mindlin Plate Theory; 4.1. Current position of the plate mid-surface; 4.2. Current position of the plate -- Displacement field; 4.3. Gradient of displacement; 4.4. Strain tensor 
505 8 |a 4.5. Velocity field4.6. Virtual velocity field; 4.7. Virtual power of inertia forces; 4.8. Virtual power of internal forces; 4.9. Virtual power of external forces; 4.10. Equations of motion and boundary conditions; 4.11. Note on couples; 4.12. Static problems; 4.13. Overview of equations and unknowns; Chapter 5. Kirchhoff-Love Plate Theory; 5.1. Current position of the plate mid-surface; 5.2. Current position of the plate -- Displacement field; 5.3. Strain tensor; 5.4. Velocity field; 5.5. Virtual velocity field; 5.6. Virtual powers of inertia forces; 5.7. Virtual power of internal forces 
505 8 |a 6.9. Review of the hypotheses usedChapter 7. Linearized Kirchhoff-Love Plate Theory; 7.1. Statement of the problem; 7.2. Linearization principle; 7.3. Linearization of the vectors of the current natural basis; 7.4. Linearized current curvatures; 7.5. Linearized current Christoffel symbols; 7.6. Linearized strain tensor; 7.7. Linearized integrated constitutive laws; 7.8. Linearized governing equations and boundary conditions -- Vibrations of a pre-stressed plate; 7.9. Overview of the equations and unknowns; 7.10. Displacement equations; 7.11. Equilibrium of a pre-stressed plate 
520 |a Provides the theoretical materials necessary for the three plate models--Cosserat plates, Reissner-Mindlin plates and Kirchhoff-Love plates--in the context of finite elastic deformations. One separate chapter is devoted to the linearized theory of Kirchhoff-Love plates, which allows for the study of vibrations of a pre-stressed plate and the static buckling of a plate. All mathematical results in the tensor theory in curvilinear coordinates necessary to investigate the plate theory in finite deformations are provided, making this a self-contained resource.--Provided by publisher. 
650 0 |a Plates (Engineering)  |x Vibration  |x Mathematical models. 
650 0 |a Cylinders  |x Vibration  |x Mathematical models. 
650 0 |a Nonlinear oscillations  |x Mathematical models. 
650 6 |a Oscillations non lin�eaires  |0 (CaQQLa)201-0056434  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 7 |a TECHNOLOGY & ENGINEERING  |x Civil  |x General.  |2 bisacsh 
650 7 |a Cylinders  |x Vibration  |x Mathematical models  |2 fast  |0 (OCoLC)fst00886055 
650 7 |a Nonlinear oscillations  |x Mathematical models  |2 fast  |0 (OCoLC)fst01038805 
650 7 |a Plates (Engineering)  |x Vibration  |x Mathematical models  |2 fast  |0 (OCoLC)fst01066800 
776 0 8 |i Print version:  |a Van, Anh Le.  |t Nonlinear theory of elastic plates.  |d London, UK : ISTE Press ; Kidlington, Oxford, UK : Elsevier, 2017  |z 1785482270  |z 9781785482274  |w (OCoLC)973806047 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781785482274  |z Texto completo 
880 8 |6 505-00/(S  |a 5.8. Virtual power of external forces5.9. Equations of motion and boundary conditions; 5.10. Static problems; 5.11. Overview of equations and unknowns; 5.12. Example: Kirchhoff-Love plate in cylindrical bending; Chapter 6. Constitutive Law of Plates; 6.1. Hyperelastic 3D constitutive law; 6.2. Strains in terms of the Z-coordinate; 6.3. Stress resultants for Cosserat plates; 6.4. Zero normal stress hypothesis σ33 = 0; 6.5. Plane stress state; 6.6. Reduced constitutive law; 6.7. Stress resultants for Reissner-Mindlin plates; 6.8. Stress resultants for Kirchhoff-Love plates