Cargando…

Techniques of functional analysis for differential and integral equations /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sacks, Paul
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2017.
Colección:Mathematics in science and engineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn987810722
003 OCoLC
005 20231120112232.0
006 m o d
007 cr |n|||||||||
008 170523s2017 enk ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d IDEBK  |d EBLCP  |d YDX  |d MERUC  |d NLE  |d OPELS  |d N$T  |d OCLCF  |d MERER  |d OCLCQ  |d OTZ  |d D6H  |d UAB  |d OCLCQ  |d U3W  |d UMR  |d WYU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 987790925  |a 988021904 
020 |a 9780128114575  |q (electronic bk.) 
020 |a 0128114576  |q (electronic bk.) 
020 |z 0128114266 
020 |z 9780128114261 
035 |a (OCoLC)987810722  |z (OCoLC)987790925  |z (OCoLC)988021904 
050 4 |a QA320  |b .S33 2017 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.7 
100 1 |a Sacks, Paul. 
245 1 0 |a Techniques of functional analysis for differential and integral equations /  |c Paul Sacks. 
260 |a London :  |b Academic Press,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics in science and engineering 
505 0 |a Front Cover; Techniques of Functional Analysis for Differential and Integral Equations; Copyright; Contents; Preface; Chapter 1: Some Basic Discussion of Differential and Integral Equations; 1.1 Ordinary Differential Equations; 1.1.1 Initial Value Problems; 1.1.2 Boundary Value Problems; 1.1.3 Some Exactly Solvable Cases; 1.2 Integral Equations; 1.3 Partial Differential Equations; 1.3.1 First Order PDEs and the Method of Characteristics; 1.3.2 Second Order Problems in R2; 1.3.3 Further Discussion of Model Problems; Wave Equation; Heat Equation; Laplace Equation. 
505 8 |a 1.3.4 Standard Problems and Side Conditions1.4 Well-Posed and Ill-Posed Problems; 1.5 Exercises; Chapter 2: Vector Spaces; 2.1 Axioms of a Vector Space; 2.2 Linear Independence and Bases; 2.3 Linear Transformations of a Vector Space; 2.4 Exercises; Chapter 3: Metric Spaces; 3.1 Axioms of a Metric Space; 3.2 Topological Concepts; 3.3 Functions on Metric Spaces and Continuity; 3.4 Compactness and Optimization; 3.5 Contraction Mapping Theorem; 3.6 Exercises; Chapter 4: Banach Spaces; 4.1 Axioms of a Normed Linear Space; 4.2 Infinite Series; 4.3 Linear Operators and Functionals. 
505 8 |a 4.4 Contraction Mappings in a Banach Space4.5 Exercises; Chapter 5: Hilbert Spaces; 5.1 Axioms of an Inner Product Space; 5.2 Norm in a Hilbert Space; 5.3 Orthogonality; 5.4 Projections; 5.5 Gram-Schmidt Method; 5.6 Bessel's Inequality and Infinite Orthogonal Sequences; 5.7 Characterization of a Basis of a Hilbert Space; 5.8 Isomorphisms of a Hilbert Space; 5.9 Exercises; Chapter 6: Distribution Spaces; 6.1 The Space of Test Functions; 6.2 The Space of Distributions; 6.3 Algebra and Calculus With Distributions; 6.3.1 Multiplication of Distributions; 6.3.2 Convergence of Distributions. 
505 8 |a 6.3.3 Derivative of a Distribution6.4 Convolution and Distributions; 6.5 Exercises; Chapter 7: Fourier Analysis; 7.1 Fourier Series in One Space Dimension; 7.2 Alternative Forms of Fourier Series; 7.3 More About Convergence of Fourier Series; 7.4 The Fourier Transform on RN; 7.5 Further Properties of the Fourier Transform; 7.6 Fourier Series of Distributions; 7.7 Fourier Transforms of Distributions; 7.8 Exercises; Chapter 8: Distributions and Differential Equations; 8.1 Weak Derivatives and Sobolev Spaces; 8.2 Differential Equations in D'; 8.3 Fundamental Solutions. 
505 8 |a 8.4 Fundamental Solutions and the Fourier Transform8.5 Fundamental Solutions for Some Important PDEs; Laplace Operator; Heat Operator; Wave Operator; Schr�odinger Operator; Helmholtz Operator; Klein-Gordon Operator; Biharmonic Operator; 8.6 Exercises; Chapter 9: Linear Operators; 9.1 Linear Mappings Between Banach Spaces; 9.2 Examples of Linear Operators; 9.3 Linear Operator Equations; 9.4 The Adjoint Operator; 9.5 Examples of Adjoints; 9.6 Conditions for Solvability of Linear Operator Equations; 9.7 Fredholm Operators and the Fredholm Alternative; 9.8 Convergence of Operators; 9.9 Exercises. 
504 |a Includes bibliographical references and index. 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 0 |a Integral equations. 
650 6 |a Analyse fonctionnelle.  |0 (CaQQLa)201-0001196 
650 6 |a �Equations diff�erentielles.  |0 (CaQQLa)201-0003667 
650 6 |a �Equations int�egrales.  |0 (CaQQLa)201-0003669 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Differential equations  |2 fast  |0 (OCoLC)fst00893446 
650 7 |a Functional analysis  |2 fast  |0 (OCoLC)fst00936061 
650 7 |a Integral equations  |2 fast  |0 (OCoLC)fst00975507 
776 0 8 |i Print version:  |a Sacks, Paul.  |t Techniques of functional analysis for differential and integral equations.  |d London : Academic Press, 2017  |z 0128114266  |z 9780128114261  |w (OCoLC)964299852 
830 0 |a Mathematics in science and engineering. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128114261  |z Texto completo