Rigid body dynamics for space applications /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Butterworth-Heinemann,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Rigid Body Dynamics for Space Applications; Copyright; Dedication; Contents; Preface; Chapter 1: Mathematical Mechanical Preliminaries; 1.1. Mathematics; 1.1.1. Elliptic Integrals; 1.1.2. Elliptic Functions; 1.2. Rigid Body Kinematic; 1.2.1. Orthogonal Matrices; 1.2.2. Euler Angles; 1.2.3. Kinematic Equations; 1.3. Rigid Body Dynamics; 1.3.1. Kinetic Energy of Rigid Body; 1.3.2. Canonical Variables; 1.3.3. Serret-Andoyer Canonical Variables; 1.3.4. Dynamic Equations; 1.4. Chaotic Motion; 1.4.1. Poincar�e Sections; 1.4.2. Melnikov's Method.
- 1.4.3. Holms and Marsden's Modification of Melnikov's Method1.4.4. Wiggins and Holmes' Modification of Melnikov's Method; References; Chapter 2: Reentry Attitude Dynamics; 2.1. Introduction; 2.2. Aerodynamics of Reentry Vehicles; 2.2.1. Aerodynamic Forces and Moments; 2.2.2. Aerodynamic Coefficients for Reentry Capsules; 2.3. The Equations of Motion; 2.3.1. General Case; 2.3.2. Unperturbed Case; 2.4. Analytical Solutions of the Undisturbed Equation for Sinusoidal Aerodynamic Moment; 2.5. Analytical Solutions of the Undisturbed Equation for Biharmonical Aerodynamic Moment.
- 2.5.1. Qualitative Analysis of the Unperturbed System Phase Portrait2.5.2. Analytical Solution for the Unperturbed Case; 2.5.3. Solution for Sinusoidal Moment as a Particle Case of Biharmonical Solution; 2.6. Quasistatic Solutions for the Disturbed Equation of Motion; 2.7. Adiabatic Invariants and the Approximate Solution for the Disturbed Motion; 2.7.1. Action of the Body With Biharmonical Restoring Moment; 2.7.2. Action of the Body With Sinusoidal Restoring Moment; 2.8. Bifurcation and Ways of Its Elimination at the Descent of Spacecraft in the Rarefied Atmosphere.
- 2.8.1. Stability of Perturbed Motion2.8.2. Separation of Fast and Slow Variables; 2.8.3. Averaged Equations; 2.8.4. Calculation Procedure; 2.8.5. Elimination of the Bifurcation by the Choice of the Reentry Capsule Geometry; 2.8.6. Elimination of the Bifurcation by the Selection of Initial Conditions of Motion; 2.8.7. Elimination of the Bifurcation: Numerical Simulation; 2.9. Chaotic Attitude Motion of Reentry Vehicle With an Internal Moving Mass; 2.9.1. Problem Formulation; 2.9.2. Homoclinic Orbits of Biharmonical System; 2.9.3. Melnikov's Criterion for the Perturbed Motion.
- 2.9.4. Numeric Simulation of the Chaotic Motion2.10. Chaotic Behavior of Bodies in a Resistant Medium; 2.10.1. Problem Formulation; 2.10.2. Spatial Motion of the Asymmetric Body; 2.10.3. The Planar Motion of the Body Under the Biharmonic Torque and Small Disturbance Torque; 2.11. Chaotic Motion of a Reentry Capsule During Descent into the Atmosphere; References; Chapter 3: Dynamics and Control of Coaxial Satellite Gyrostats; 3.1. Introduction; 3.2. Attitude Motion Equations; 3.2.1. Euler Equations; 3.2.2. Serret-Andoyer Variables; 3.2.3. Hamiltonian Equations.