Cargando…

Nanostructures for oral medicine /

Nanostructures for Oral Medicine presents an up-to-date examination of the applications and effects of nanostructured materials in oral medicine, with each chapter addressing recent developments, specific applications, and uses of nanostructures in the oral administration of therapeutic agents in de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Andronescu, Ecaterina (Editor ), Grumezescu, Alexandru Mihai (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2017]
Colección:Nanostructures in therapeutic medicine series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Foreword of the Series
  • Preface
  • About the series (volumes I-V)
  • About Volume V
  • Chapter 1
  • Bacterial polyester nanoparticles for drug delivery
  • 1
  • Introduction
  • 2
  • Amphiphlic Block Copolymers
  • 3
  • Polymeric Nanoparticles in Drug-Delivery Applications
  • 4
  • Biodegradable Bacterial Polyesters Poly(R)-Hydroxyalkanoic Acids
  • 4.1
  • Properties of PHA
  • 4.2
  • Biodegradation of PHA
  • 4.3
  • General Applications of PHA
  • 4.4
  • PHA as Drug Carrier
  • 5
  • Targeting Drug Delivery using Ligand-Conjugated PHA Nanoparticles (Active Targeting)
  • 6
  • Chemical Modification of PHA Polymers for Drug Delivery (Passive Targeting)
  • 7
  • Synthesis of Surface Modified PHB-mPEG Diblock Copolymer
  • 8
  • Self-Assembly of Diblock Copolymer Into Nanoparticles
  • 9
  • Characterization of PHA-mPEG Nanoparticles
  • 9.1
  • Core-Shell Topology in Aqueous Solution
  • 9.2
  • Morphological Characteristics of PHA-mPEG Nanoparticles
  • 9.3
  • Drug Loading in PHA-mPEG Nanoparticles
  • 9.4
  • Drug Release from PHA-mPEG Nanoparticles
  • 9.5
  • Cellular Uptake of PHA-mPEG Nanoparticles
  • 10
  • Drawbacks and Challenges
  • 11
  • Conclusions and Future Perspectives
  • References
  • Chapter 2
  • A novel approach to the oral delivery of bionanostructures for systemic disease
  • 1
  • Introduction
  • 2
  • NanoStructures for Oral Drug Delivery
  • 3
  • The Gastrointestinal Mucus Barriers
  • 3.1
  • Mucus in the GI Tract
  • 3.2
  • Absorption in the Gastrointestinal Tract
  • 3.3
  • Transport Mechanisms in the GI Tract
  • 3.4
  • Mucosal Barrier
  • 3.5
  • Mucus Interactions
  • 4
  • Strategies for Effective Oral Delivery of Drugs
  • 5
  • Challenges in the Oral Delivery Route
  • 6
  • Characteristics of the Transporter Used in Oral Delivery Nanostructures
  • 6.1
  • Oral Delivery Nanostructures
  • 6.2
  • Hydrogels.
  • 3
  • Buccal Mucosa Chemical Permeation Enhancers: Chemical Structure, Mechanisms, and Biopharmaceutical Applications
  • 3.1
  • Surfactants and Bile Salts
  • 3.2
  • Fatty Acids
  • 3.3
  • Cyclodextrins
  • 3.4
  • Chelators
  • 3.5
  • Polymers: The Case of Chitosan and Its Derivatives and Associations
  • 4
  • Nanoparticles and Nanostructures for Transbuccal Drug Delivery
  • 4.1
  • Nanostructures
  • 4.1.1
  • Cyclodextrins
  • 4.2
  • Nanoparticles
  • 4.2.1
  • Liposomes
  • 4.2.2
  • Lipid carriers
  • 4.2.3
  • Polymeric nanoparticles
  • 4.2.4
  • Polymeric micelles
  • 5
  • Limitations
  • 6
  • Conclusions
  • Acknowledgments
  • References
  • Chapter 5
  • Trends in orally viral vector gene delivery and therapy
  • 1
  • Introduction
  • 2
  • Nanoparticles and Microparticles Applications in Oral Delivery of Drug Molecules and Therapeutic Genes
  • 3
  • The Crucial Intake Site of the Absorption of Nanoparticles and Microparticles in the Gastrointestinal Tract
  • 4
  • The Characteristics of Particles and the Effect of Intake In Vivo
  • 4.1
  • The Performance of the Particles
  • 4.2
  • The Surface Modification and Charge of the Particles
  • 4.3
  • The Size of the Particles
  • 4.4
  • The Age of the Animals
  • 5
  • Protein Transduction and the Absorption of Nanoparticles
  • 6
  • Ways to Promote the Absorption of Particles
  • 7
  • The Feasibility of Oral Gene Delivery
  • 8
  • The Oral Gene Delivery Vector System
  • 9
  • The Uptake of Oral Viral Vector
  • 10
  • The Selection of Viral Vectors Suitable for Oral Delivery
  • 10.1
  • Retrovirus
  • 10.2
  • Adenovirus
  • 10.3
  • Adeno-Associated Virus
  • 10.4
  • Other Viral Vector Systems
  • 11
  • The Digestion Circumstance of Oral Gene Delivery
  • 12
  • The Transmission, Distribution, and Transgenic Product Pharmacokinetics of Oral Viral Vectors
  • 13
  • Potential, Problems, and Prospects
  • 14
  • Conclusions
  • References.
  • Chapter 6
  • Nanostructures for oral delivery of therapeutic nucleic acids
  • 1
  • Introduction
  • 2
  • Oral Delivery of Therapeutic Nucleic Acids
  • 2.1
  • Advantages of the Oral Route of Administration
  • 2.2
  • Obstacles to Nucleic Acid Oral Delivery and Potential Targets
  • 2.2.1
  • Physiological barriers
  • 2.2.2
  • Cellular barriers and potential cellular targets
  • 2.3
  • Experimental Models for Studying the Stability and Efficiency of Oral Nucleic Acid Delivery Systems
  • 2.3.1
  • In vitro models
  • 2.3.1.1
  • Stability
  • 2.3.1.2
  • Release
  • 2.3.2
  • In cellulo models
  • 2.3.3
  • Ex vivo models
  • 2.3.4
  • In situ models
  • 2.3.5
  • In vivo models
  • 3
  • Oral Delivery Systems for Nucleic Acid Administration
  • 3.1
  • Naked Molecules (Essentially Oligonucleotides)
  • 3.2
  • Cationic Lipid-Based Nanostructures
  • 3.2.1
  • Per se
  • 3.2.2
  • Inside a polymeric matrix
  • 3.3
  • Condensing Polymer-Based Nanostructures
  • 3.3.1
  • Per se
  • 3.3.1.1
  • Chitosan
  • 3.3.1.2
  • Modified chitosan
  • 3.3.2
  • Inside a micrometric matrix
  • 3.4
  • Other Nanostructures
  • 3.5
  • Micrometric Delivery Systems and Minitablets
  • 3.5.1
  • PLGA micrometric formulations
  • 3.5.2
  • Alginate micrometric formulations
  • 3.5.3
  • Tablets
  • 4
  • Conclusions
  • References
  • Chapter 7
  • Challenges in oral drug delivery: a nano-based strategy to overcome
  • 1
  • Introduction
  • 2
  • Biopharmaceutical Classification of Drugs
  • 3
  • Measurement of Parameters Determining Bioavailability
  • 3.1
  • Dissolution
  • 3.2
  • Solubility
  • 3.3
  • Permeability
  • 4
  • Transport Mechanism in GIT
  • 5
  • Gastrointestinal Luminal Milieu and Drug Absorption
  • 5.1
  • pH Variation in GIT
  • 5.1.1
  • Gastric pH
  • 5.1.2
  • Intestinal pH
  • 5.1.3
  • Colonic pH
  • 5.2
  • Gastrointestinal Microbiota
  • 5.3
  • Gastric Emptying Rate
  • 6
  • Improving Drug Bioavailability.
  • 7
  • Pharmaceutics Approach Enabling Physical Modification of Drugs
  • 7.1
  • Particle Size Reduction
  • 7.2
  • Modification of Crystal Habit
  • 7.3
  • Drug Dispersion in Carriers
  • 7.4
  • Complexation
  • 7.5
  • Solubilization by Surfactants
  • 7.6
  • Chemical Modification
  • 8
  • Improving Stability of Oral Drugs
  • 9
  • Nanostructures in Oral Drug Delivery
  • 9.1
  • Polymeric Formulation
  • 9.1.1
  • Polymeric Nanoparticle
  • 9.1.2
  • Polymeric Micelles
  • 9.1.3
  • Nanocrystals
  • 9.1.4
  • Nanoemulsion
  • 9.1.5
  • Dendrimers
  • 9.1.6
  • Self-assembled chitosan (CS) nanoparticles
  • 9.2
  • Lipid-Based Formulations
  • 9.2.1
  • Liposomes
  • 9.2.2
  • Solid Lipid Nanoparticles
  • 9.2.3
  • Nanostructured Lipid Carriers
  • 9.3
  • Metal and Inorganic-Based Nanocarriers
  • 9.3.1
  • Layer-by- Layer Structured Nanocarriers
  • 9.3.2
  • Silica-Based Nanocarriers
  • 9.3.3
  • Gold Nanoparticles
  • 9.3.4
  • Carbon Nanotubes
  • 9.3.5
  • Nanoshells
  • 9.3.6
  • Quantum Dots
  • 10
  • Conclusions
  • Acknowledgment
  • Conflict of Interest
  • References
  • Chapter 8
  • Oral pellets loaded with nanoemulsions
  • 1
  • Pellets
  • 1.1
  • Introduction to Pellets
  • 1.2
  • General Description of the Extrusion Spheronization Process (Wet Mass Extrusion)
  • 1.3
  • Process and Equipment
  • 1.4
  • Formulation
  • 1.4.1
  • Microcrystalline cellulose as spheronization aid
  • 1.4.2
  • Alternative excipients for microcrystalline cellulose
  • 1.4.3
  • Use of other excipients in the extrusion-spheronization process
  • 1.5
  • Evaluation of Pellets
  • 2
  • Nanoemulsions
  • 2.1
  • Introduction
  • 2.2
  • Method
  • 2.2.1
  • High-energy emulsification methods
  • 2.2.2
  • Low-energy emulsification methods
  • 2.3
  • Materials Used in Nanoemulsions Production
  • 3
  • Biopharmaceutical Classification System (BSC) andApplications of Pellet to Improve Dissolution Rate of Drugs in BCS Cl ...
  • 4
  • Case Study
  • 4.1
  • Coating of Pellets.
  • 4.2
  • Dissolution Tests.