Low grade heat driven multi-effect distillation and desalination /
Low Grade Heat Driven Multi-effect Distillation and Desalination describes the development of advanced multi-effect evaporation technologies that are driven by low grade sensible heat, including process waste heat in refineries, heat rejection from diesel generators or microturbines, and solar and g...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2017]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Low Grade Heat Driven Multi-Effect Distillation and Desalination; Low Grade Heat Driven Multi-Effect Distillation and Desalination; Copyright; Dedication; Contents; Biography; Preface; 1
- Introduction to Desalination; 1.1 Introduction; 1.2 A Brief History of Desalination; 1.3 Desalination Technologies; 1.3.1 Processes With Phase Change; 1.3.1.1 Multi-Stage Flash; 1.3.1.2 Multi-Effect Distillation or Evaporation; 1.3.1.3 Vapor Compression Distillation; 1.3.2 Processes Without Phase Change; 1.4 Energy Consumption and Environmental Impacts of Desalination Processes; References.
- 2
- Low Grade Sensible Heat-Driven Distillation2.1 Introduction to Low Grade Sensible Heat Sources; 2.2 Conventional Multi-Effect Distillation Process; 2.3 Preheated Multi-Effect Distillation Process; 2.4 Boosted Multi-Effect Distillation Process; 2.5 Flash-Boosted Multi-Effect Distillation Process; References; 3
- Boosted Multi-Effect Distillation Pilot Plant; 3.1 Introduction; 3.2 Pilot Plant and Instrumentation; 3.3 Process Simulation and Validation; 3.4 Test Results; 3.4.1 Start-Up; 3.4.2 Product Quality; 3.4.3 Effect of Heat Source and Cooling Water Temperatures.
- 3.4.4 Effect of Feed Water Salinity3.4.5 Potential of Boosting; 3.5 Conclusion; References; 4
- Mathematical Simulation; 4.1 Introduction; 4.2 Mathematical Simulation Method; 4.2.1 Conventional Multi-Effect Distillation Process; 4.2.1.1 First Effect; 4.2.1.1.1 Energy Balance; 4.2.1.1.2 Temperature-Energy Profile and UA Value; 4.2.1.2 Second Effect to the Last Effect; 4.2.1.2.1 Energy Balance; 4.2.1.2.2 Temperature-Energy Profile and UA Value; 4.2.1.3 Condenser; 4.2.1.3.1 Energy Balance; 4.2.1.3.2 Temperature-Energy Profile and UA Value; 4.2.2 Preheated Multi-Effect Distillation Process.
- 4.2.3 Boosted Multi-Effect Distillation Process4.2.3.1 Primary Multi-Effect Distillation Section; 4.2.3.1.1 Energy Balance for the Injected Effect; 4.2.3.1.2 Temperature-Energy Profile and UA Value for the Injected Effect; 4.2.3.2 Booster; 4.2.4 Flash-Boosted Multi-Effect Distillation Process; 4.2.4.1 Primary Multi-Effect Distillation Section; 4.2.4.1.1 Injected Effects; 4.2.4.1.1.1 Energy Balance for the Injected Effects; 4.2.4.1.1.2 Temperature-Energy Profile and UA Value for the Injected Effects; 4.2.4.1.2 Condenser; 4.2.4.1.2.1 Energy Balance.
- 4.2.4.1.2.2 Temperature-Energy Profile and UA Value4.2.4.2 Flashing Section; 4.2.4.2.1 Brine Heater; 4.2.4.2.2 Battery of Flashing Chambers; 4.2.4.2.3 Brine Recirculation Process; 4.2.4.2.4 Deaerator; 4.2.5 Overall Mass, Salinity, and Energy Balances; 4.2.5.1 Conventional Multi-Effect Distillation Process; 4.2.5.2 Preheated Multi-Effect Distillation Process; 4.2.5.3 Boosted Multi-Effect Distillation Process; 4.2.5.4 Flash-Boosted Multi-Effect Distillation Process; 4.2.6 Solving Procedure; References; 5
- Pumping Power Analysis; 5.1 Introduction; 5.2 Pressure Drops in Desalination Plants.