Cargando…

Modelling and Mechanics of Carbon-based Nanostructured Materials.

Modelling and Mechanics of Carbon-based Nanostructured Materials sets out the principles of applied mathematical modeling in the topical area of nanotechnology. It is purposely designed to be self-contained, giving readers all the necessary modeling principles required for working with nanostructure...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Duangkamon Baowan
Otros Autores: Cox, Barry J., Hilder, Tamsyn A., Hill, James M., Thamwattana, Ngamta
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Saint Louis : Elsevier Science, 2017.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 SCIDIR_ocn973182942
003 OCoLC
005 20231120112218.0
006 m o d
007 cr |||||||||||
008 170304s2017 mou ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d N$T  |d NLE  |d IDEBK  |d OPELS  |d MERER  |d GZM  |d ESU  |d OCLCQ  |d UPM  |d ABC  |d D6H  |d COS  |d COF  |d U3W  |d DEBBG  |d OCLCQ  |d BWN  |d LUN  |d S2H  |d MERUC  |d LOA  |d TUHNV  |d UAB  |d OCLCO  |d SFB  |d K6U  |d OCLCQ 
066 |c Grek  |c (S 
019 |a 972734334  |a 972915352  |a 973086909  |a 973313843  |a 973371648  |a 973504974  |a 973743748  |a 973802259  |a 976042531  |a 976254832  |a 981853196  |a 989710332  |a 1311348888 
020 |a 9780128124642 
020 |a 0128124644 
020 |z 0128124636 
020 |z 9780128124635 
035 |a (OCoLC)973182942  |z (OCoLC)972734334  |z (OCoLC)972915352  |z (OCoLC)973086909  |z (OCoLC)973313843  |z (OCoLC)973371648  |z (OCoLC)973504974  |z (OCoLC)973743748  |z (OCoLC)973802259  |z (OCoLC)976042531  |z (OCoLC)976254832  |z (OCoLC)981853196  |z (OCoLC)989710332  |z (OCoLC)1311348888 
050 4 |a TA418.9.N35  |b B36 2017 
072 7 |a TEC  |x 009000  |2 bisacsh 
072 7 |a TEC  |x 035000  |2 bisacsh 
082 0 4 |a 620.115  |2 23 
100 1 |a Duangkamon Baowan. 
245 1 0 |a Modelling and Mechanics of Carbon-based Nanostructured Materials. 
264 1 |a Saint Louis :  |b Elsevier Science,  |c 2017. 
300 |a 1 online resource (388 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Micro and Nano Technologies 
588 0 |a Print version record. 
505 0 |6 880-01  |a Front Cover; Modelling and Mechanics of Carbon-based Nanostructured Materials; Copyright; Contents; Preface; Chapter 1: Geometry and Mechanics of Carbon Nanostructures; 1.1 Background; 1.2 Carbon Nanostructures; 1.2.1 Graphene and C-C Bonding; 1.2.2 Carbon Nanotubes and the Rolled-Up Model; 1.2.3 Goldberg Fullerenes; 1.2.4 Cones; 1.2.5 Euler's Theorem and the Isolated Pentagon; 1.3 Interaction Between Molecular Structures; 1.3.1 Interaction Energy; 1.3.2 Interaction Force; 1.3.3 Lennard-Jones Potential; 1.4 Book Overview; Exercises; Chapter 2: Mathematical Preliminaries; 2.1 Introduction. 
505 8 |a 3.4.5 Interaction Between Parallel Infinite Cylindrical Surfaces3.4.6 Interaction Between an Axial Point and Semiinfinite Cylindrical Surfaces; Chapter 4: Nested Carbon Nanostructures; 4.1 Introduction; 4.2 Atom@Fullerene-Endohedral Fullerene; 4.3 Fullerene@Fullerene-Carbon Onion; 4.4 Fullerene@Carbon Nanotube; 4.5 Carbon Onion@Carbon Nanotube; 4.6 Carbon Nanotube@Carbon Nanotube; 4.7 Nanotube Bundles; 4.7.1 Interaction Potential for Two Nanotubes; 4.7.2 Equilibrium Position for a Bundle of Nanotubes; 4.8 Carbon Nanotube@Nanotube Bundle; 4.9 Fullerene@Nanotube Bundle; Exercises. 
500 |a Chapter 5: Acceptance Condition and Suction Energy. 
504 |a Includes bibliographical references and index. 
520 |a Modelling and Mechanics of Carbon-based Nanostructured Materials sets out the principles of applied mathematical modeling in the topical area of nanotechnology. It is purposely designed to be self-contained, giving readers all the necessary modeling principles required for working with nanostructures. The unique physical properties observed at the nanoscale are often counterintuitive, sometimes astounding researchers and thus driving numerous investigations into their special properties and potential applications. Typically, existing research has been conducted through experimental studies and molecular dynamics simulations. This book goes beyond that to provide new avenues for study and review. 
650 0 |a Nanostructured materials  |x Mathematical models. 
650 6 |a Nanomat�eriaux  |0 (CaQQLa)201-0258061  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 7 |a TECHNOLOGY & ENGINEERING  |x Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Reference.  |2 bisacsh 
700 1 |a Cox, Barry J. 
700 1 |a Hilder, Tamsyn A. 
700 1 |a Hill, James M. 
700 1 |a Thamwattana, Ngamta. 
776 0 8 |i Print version:  |a Baowan, Duangkamon.  |t Modelling and Mechanics of Carbon-based Nanostructured Materials.  |d Saint Louis : Elsevier Science, �2017  |z 9780128124635 
830 0 |a Micro & nano technologies. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128124635  |z Texto completo 
880 8 |6 505-00/(S  |a b, b' c; x, y); 2.8 Associated Legendre Functions: Pνμ(z) and Qνμ(z); 2.9 Chebyshev Polynomials: Tn(x) and Un(x); 2.10 Elliptic Integrals: F(ϕ, k) and E(ϕ, k); Exercises; Chapter 3: Evaluation of Lennard-Jones Potential Fields; 3.1 Introduction; 3.2 Interaction of Linear Objects; 3.2.1 Interaction of a Point With a Line; 3.2.2 Interaction of a Point With a Plane; 3.2.3 Interaction of Two Skew Lines; 3.2.4 Interaction Between Parallel Lines and Planes; 3.3 Interaction of a Spherical Surface; 3.3.1 Spherical Coordinate System; 3.3.2 Interaction of Point With a Sphere. 
880 8 |6 505-00/(S  |a 2.2 Dirac Delta Function: δ(x)2.3 Heaviside Function: H(x); 2.4 Gamma Function: Γ(z); 2.5 Beta Function: B(x, Y); 2.6 Hypergeometric Function: F(a, b; c; z); 2.6.1 Hypergeometric Series; 2.6.2 Relationships to Other Functions; 2.6.3 Hypergeometric Differential Equation; 2.6.3.1 None of the numbers c, a-b, or c-a-b are integers; 2.6.3.2 One of the numbers a, b, c-a, or c-b are integers; 2.6.3.3 One of the numbers c-a-b or c are integers; 2.6.4 Contiguous Relations; 2.6.5 Quadratic Transformations; 2.6.6 Integral Forms of the Hypergeometric Function; 2.7 Appell's Hypergeometric Function: F1(a. 
880 8 |6 505-01/(S  |a 3.3.2.1 An alternative approach3.3.3 Interaction of Line With a Spherical Surface; 3.3.4 Interaction of a Plane With a Spherical Surface; 3.3.5 Interaction of Two Concentric Spherical Surfaces; 3.3.6 Interaction of Two Offset Spherical Surfaces; 3.4 Interaction of a Cylindrical Surface; 3.4.1 Cylindrical Coordinate System (r, θ, z); 3.4.2 Interaction of Interior Point With Infinite Cylindrical Surface; 3.4.3 Interaction of an Exterior Point With an InfiniteCylindrical Surface; 3.4.4 Interaction of a Spherical Surface With an InfiniteCylindrical Surface.