|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn970041757 |
003 |
OCoLC |
005 |
20231120112209.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170126s2017 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d EBLCP
|d OPELS
|d N$T
|d YDX
|d OCLCQ
|d IDEBK
|d UAB
|d OCLCF
|d OCLCA
|d COO
|d WTU
|d OTZ
|d OCLCQ
|d MERUC
|d D6H
|d U3W
|d OCLCQ
|d INT
|d UKMGB
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d LVT
|d VT2
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
016 |
7 |
|
|a 018192639
|2 Uk
|
019 |
|
|
|a 970389431
|a 970611470
|a 970799007
|a 971041814
|a 971079690
|a 971232061
|a 971360211
|a 1066574868
|a 1105190367
|a 1105566437
|a 1151764957
|a 1162086715
|a 1229874598
|a 1235845084
|a 1259586452
|
020 |
|
|
|a 9780128045114
|q (electronic bk.)
|
020 |
|
|
|a 0128045116
|q (electronic bk.)
|
020 |
|
|
|z 9780128044667
|q (print)
|
020 |
|
|
|z 0128044667
|
035 |
|
|
|a (OCoLC)970041757
|z (OCoLC)970389431
|z (OCoLC)970611470
|z (OCoLC)970799007
|z (OCoLC)971041814
|z (OCoLC)971079690
|z (OCoLC)971232061
|z (OCoLC)971360211
|z (OCoLC)1066574868
|z (OCoLC)1105190367
|z (OCoLC)1105566437
|z (OCoLC)1151764957
|z (OCoLC)1162086715
|z (OCoLC)1229874598
|z (OCoLC)1235845084
|z (OCoLC)1259586452
|
050 |
|
4 |
|a QA165
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512.7/3
|2 23
|
100 |
1 |
|
|a Kowalenko, Victor,
|d 1956-
|e author.
|
245 |
1 |
4 |
|a The partition method for a power series expansion :
|b theory and applications /
|c Victor Kowalenko.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press is an imprint of Elsevier,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Front Cover; The Partition Method for a Power Series Expansion; Copyright; Contents; Preface; 1 Introduction; 1.1 Cosecant Expansion; 1.2 Reciprocal Logarithm Numbers; 1.3 Bernoulli and Related Polynomials; 2 More Advanced Applications; 2.1 Bell Polynomials of the First Kind; 2.2 Generalized Cosecant and Secant Numbers; 2.3 Generalized Reciprocal Logarithm Numbers; 2.4 Generalization of Elliptic Integrals; 3 Generating Partitions; 4 General Theory; 5 Programming the Partition Method for a Power Series Expansion; 6 Operator Approach; 7 Classes of Partitions.
|
505 |
8 |
|
|a 8 The Partition-Number Generating Function and Its Inverted Form8.1 Generalization of the Inverted Form of P(z); 9 Generalization of the Partition-Number Generating Function; 10 Conclusion; A Regularization; B Computer Programs; References; Index; Back Cover.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed February 2, 2017).
|
650 |
|
0 |
|a Partitions (Mathematics)
|
650 |
|
6 |
|a Partitions (Math�ematiques)
|0 (CaQQLa)201-0051756
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Partitions (Mathematics)
|2 fast
|0 (OCoLC)fst01054188
|
776 |
0 |
8 |
|i Print version:
|a Kowalenko, V.
|t Partition method for a power series expansion.
|d London, United Kingdom : Academic Press is an imprint of Elsevier, 2017
|z 0128044667
|z 9780128044667
|w (OCoLC)959872053
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128044667
|z Texto completo
|