Cargando…

Extended finite element method /

The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhuang, Zhuo (Autor), Liu, Zhanli (Autor), Cheng, Binbin (Autor), Liao, Jianhui (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Oxford, UK : Elsevier ; Academic Press, 2014.
Edición:First edition.
Colección:Elsevier and Tsinghua University Press computational mechanics series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. Significance of Studying Computational Fracture Mechanics
  • 1.2. Introduction to X-FEM
  • 1.3. Research Status and Development of X-FEM
  • 1.3.1. The Development of X-FEM Theory
  • 1.3.2. Development of 3D X-FEM
  • 1.4.Organization of this Book
  • 2.1. Introduction
  • 2.2. Two-Dimensional Linear Elastic Fracture Mechanics
  • 2.3. Material Fracture Toughness
  • 2.4. Fracture Criterion of Linear Elastic Material
  • 2.5.Complex Fracture Criterion
  • 2.5.1. Maximum Circumference Tension Stress Intensity Factor Theory
  • 2.5.2. Minimum Strain Energy Density Stress Intensity Factor Theory
  • 2.5.3. Maximum Energy Release Rate Theory
  • 2.6. Interaction Integral
  • 2.7. Summary
  • 3.1. Introduction to Dynamic Fracture Mechanics
  • 3.2. Linear Elastic Dynamic Fracture Theory
  • 3.2.1. Dynamic Stress Field at Crack Tip Position
  • 3.2.2. Dynamic Stress Intensity Factor
  • 3.2.3. Dynamic Crack Propagating Condition and Velocity
  • 3.3. Crack Driving Force Computation.
  • Contents note continued: 3.3.1. Solution Based on Nodal Force Release
  • 3.3.2. Solution Based on Energy Balance
  • 3.4. Crack Propagation in Steady State
  • 3.5. Engineering Applications of Dynamic Fracture Mechanics
  • 3.6. Summary
  • 4.1.X-FEM Based on the Partition of Unity
  • 4.2. Level Set Method
  • 4.3. Enriched Shape Function
  • 4.3.1. Description of a Strong Discontinuity Surface
  • 4.3.2. Description of a Weak Discontinuity Surface
  • 4.4. Governing Equation and Weak Form
  • 4.5. Integration on Spatial Discontinuity Field
  • 4.6. Time Integration and Lumped Mass Matrix
  • 4.7. Postprocessing Demonstration
  • 4.8. One-Dimensional X-FEM
  • 4.8.1. Enriched Displacement
  • 4.8.2. Mass Matrix
  • 4.9. Summary
  • 5.1. Numerical Study and Precision Analysis of X-FEM
  • 5.1.1.A Half Static Crack in a Finite Plate
  • 5.1.2.A Beam with Stationary Crack under Dynamic Loading
  • 5.1.3. Simulation of Complex Crack Propagation
  • 5.1.4. Simulation of the Interface.
  • Contents note continued: 5.1.5. Interaction Between Crack and Holes
  • 5.1.6. Interfacial Crack Growth in Bimaterials
  • 5.2. Two-Dimensional High-Order X-FEM
  • 5.2.1. Spectral Element-Based X-FEM
  • 5.2.2. Mixed-Mode Static Crack
  • 5.2.3. Kalthoff's Experiment
  • 5.2.4. Mode I Moving Crack
  • 5.3. Crack Branching Simulation
  • 5.3.1. Crack Branching Enrichment
  • 5.3.2. Branch Criteria
  • 5.3.3. Numerical Examples
  • 5.4. Summary
  • 6.1. Introduction
  • 6.2. Overview of Plate and Shell Fracture Mechanics
  • 6.2.1. Kirchhoff Plate and Shell Bending Fracture Theory
  • 6.2.2. Reissner Plate and Shell Bending Fracture Theory
  • 6.3. Plate and Shell Theory Applied In Finite Element Analysis
  • 6.4. Brief Introduction to General Shell Elements
  • 6.4.1. Belytschko-Lin-Tsay Shell Element
  • 6.4.2. Continuum-Based Shell Element
  • 6.5.X-FEM on CB Shell Elements
  • 6.5.1. Shape Function of a Crack Perpendicular to the Mid-Surface
  • 6.5.2. Shape Function of a Crack Not Perpendicular to the Mid-Surface.
  • Contents note continued: 6.5.3. Total Lagrangian Formulation
  • 6.5.4. Time Integration Scheme and Linearization
  • 6.5.5. Continuum Element Transformed to Shell
  • 6.6. Crack Propagation Criterion
  • 6.6.1. Stress Intensity Factor Computation
  • 6.6.2. Maximum Energy Release Rate Criterion
  • 6.7. Numerical Examples
  • 6.7.1. Mode I Central Through-Crack in a Finite Plate
  • 6.7.2. Mode III Crack Growth in a Plate
  • 6.7.3. Steady Crack in a Bending Pipe
  • 6.7.4. Crack Propagation Along a Given Path in a Pipe
  • 6.7.5. Arbitrary Crack Growth in a Pipe
  • 6.8. Summary
  • 7.1. Introduction
  • 7.2. Theoretical Solutions of Subinterfacial Fracture
  • 7.2.1.Complex Variable Function Solution for Sub- interfacial Cracks
  • 7.2.2. Solution Considering the Crack Surface Affected Area
  • 7.2.3. Analytical Solution of a Finite Dimension Structure
  • 7.3. Simulation of Subinterfacial Cracks Based On X-FEM
  • 7.3.1. Experiments on Subinterfacial Crack Growth.
  • Contents note continued: 7.3.2.X-FEM Simulation of Subinterfacial Crack Growth
  • 7.4. Equilibrium State of Subinterfacial Mode I Cracks
  • 7.4.1. Effect on Fracture Mixed Level by Crack Initial Position
  • 7.4.2. Effect on Material Inhomogeneity and Load Asymmetry
  • 7.5. Effect on Subinterfacial Crack Growth from a Tilted Interface
  • 7.6. Summary
  • 8.1. Introduction
  • 8.2. Level Set Method for Composite Materials
  • 8.2.1. Level Set Representation
  • 8.2.2. Enrichment Function
  • 8.2.3. Lumped Mass Matrix
  • 8.3. Microstructure Generation
  • 8.4. Material Constitutive Model
  • 8.5. Numerical Examples
  • 8.5.1. Static Analysis
  • 8.5.2. Dynamic Analysis
  • 8.6. Summary
  • 9.1. Governing Equations and Interfacial Conditions
  • 9.2. Interfacial Description of Two-Phase Flows
  • 9.3.X-FEM and Unknown Parameters Discretization
  • 9.4. Discretization of Governing Equations
  • 9.5. Numerical Integral Method
  • 9.6. Examples and Analyses
  • 9.7. Summary.
  • Contents note continued: 10.1. Research on Micro-Scale Crystal Plasticity
  • 10.1.1. Discrete Dislocation Plasticity Modeling
  • 10.1.2.X-FEM Simulation of Dislocations
  • 10.2. Application of Multi-Scale Simulation
  • 10.3. Modeling of Deformation Localization
  • 10.4. Summary.