Nanoscience and its applications /
Nanoscience and Its Applications explores how nanoscience is used in modern industry to increase product performance, including an understanding of how these materials and systems, at the molecular level, provide novel properties and physical, chemical, and biological phenomena that have been succes...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Kidlington :
William Andrew,
[2017]
|
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Copyright Page; Table of content; List of Contributors; 1
- Nanomaterials: Solar Energy Conversion; 1.1
- Introduction; 1.2
- Conversion of Solar Energy Into Electricity; 1.2.1
- Solar Spectrum and Photovoltaic Performance Parameters; 1.2.2
- Operating Principles of a Solar Cell; 1.2.3
- Organic Solar Cells; 1.2.4
- Dye-Sensitized Solar Cells; 1.3
- Photoelectrochemical Cells for the Production of Solar Fuels; 1.4
- Conclusions and Perspectives; List of Symbols; References; 2
- Nanoelectronics; 2.1
- Organic Materials for Nanoelectronics: Insulators and Conductors.
- 2.1.1
- Techniques for Making Organic Films2.2
- Process of Charge Transport in Organic Devices; 2.3
- Organic Thin Film Transistors; 2.3.1
- Structure of the TFT; 2.3.2
- Modeling of the Characteristic Curves; 2.3.2.1
- Field Effect Mobility; 2.3.2.2
- Organic TFT-Based Sensors; 2.4
- Organic Light-Emitting Diodes; 2.4.1
- Structure of Thin Films in OLEDs and Typical Materials Used; 2.4.2
- Electrooptic Characterization of OLEDs; List of Symbols; References; 3
- Nanomedicine; 3.1
- Nanomedicine; 3.2
- Nanomaterials Applied to Diagnosis and Therapy; 3.2.1
- Use of Nanomaterials in Medicine.
- 3.2.2
- Medical Applications of Magnetite and Core-Shells3.2.3
- Controlled Drug Delivery; 3.2.4
- Nanoparticles in Photothermal and Photodynamic Therapy; 3.2.5
- Nanoparticles for Upconversion-Imaging of Cancer Cells; 3.3
- Synthesis of Nanomaterials for Application in Nanomedicine; 3.3.1
- Gold Nanoparticles; 3.3.2
- Magnetic Nanoparticles; 3.3.3
- Core-Shell-Type Structures; 3.3.4
- Biofunctionalization of Nanomaterials; 3.4
- Nanotoxicology; 3.4.1
- In Vitro Assays; 3.4.2
- In Vivo Studies; References; 4
- Nanoneurobiophysics; 4.1
- Introduction; 4.2
- Nanopharmacology.
- 4.3
- Nanoneuroscience and Nanoneuropharmacology4.3.1
- Basic Nanoneuroscience; 4.3.1.1
- AFM; 4.3.1.2
- Quantum Dots; 4.3.2
- Clinical Nanoneuroscience; 4.3.2.1
- Neuroprotection and Neuroregeneration; 4.3.2.1.1
- Carbon nanotubes; 4.3.2.1.2
- Fullerenes; 4.3.2.2
- Nanoneuropharmacology: Controlled Delivery Systems Applied to CNS Diseases; 4.3.2.2.1
- Nanogels; 4.3.2.2.2
- Liposomes; 4.3.2.2.3
- Biodegradable nanoparticles; 4.3.2.2.4
- Micelles; 4.3.2.2.5
- Dendrimers; 4.3.2.2.6
- Nanosponges; 4.4
- Computational Resources in Nanomedicine.
- 4.4.1
- Computational Neuroscience, Neuroinformatics, and Neurobiophysics4.4.2
- Nano(bio)informatics; 4.4.3
- Application of Informatics Methods and Tools to Nanomedical Data; Abbreviations; Glossary; References; 5
- Nanosensors; 5.1
- Introduction; 5.2
- Sensors and Nanosensors: New Detection Tools; 5.3
- Atomic Force Spectroscopy (Force Curve); 5.3.1
- Theoretical Considerations Regarding Force Curves; 5.3.1.1
- Basic AFS Principles; 5.3.1.2
- Theoretical Models for Analysis of Force Curves; 5.3.1.2.1
- Hertz and Sneddon theory; 5.3.1.2.2
- Bradley, Derjaguin-Muller-Toporov, and Johnson-Kendall-Roberts theories.