Radio-frequency digital-to-analog converters : implementation in nanoscale CMOS /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2016.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction
- 1.1. The Conventional RF Radio
- 1.2. Motivation
- 1.3. The Book Objectives
- 1.3.1. System Simulation of WCDMA Baseband Data
- 1.3.2. Some Important Figures-of-Merit in RF Transmitters
- 1.4. Analog Versus Digital RF Transmitters
- 1.5. Analog-Intensive RF Transmitters
- 1.6. Digitally Intensive RF Transmitters
- 1.7. New Paradigm of RF Design in Nanometer-Scale CMOS
- 1.8. All-Digital Polar Transmitter
- 1.9. All-Digital I/Q Transmitter
- 1.10. Conclusion
- 1.11. Book Outline
- ch. 2 Digital Polar Transmitter Architecture
- 2.1. Introduction to Narrowband Polar Transmitters
- 2.1.1. Motivation
- 2.1.2. Contrast With Conventional Analog Approaches
- 2.2. Overview of the RFDAC-Based Polar Transmitter Architecture
- 2.2.1. Overview of the DPA
- 2.2.2. DCO Operating Frequency and CKV Clock
- 2.3. Details of Phase Modulation
- 2.4. Design Challenges for the Small-Signal Polar Transmitter
- 2.4.1. DCO Phase Noise
- Note continued: 4.2.3. Transfer Function and Spectrum
- 4.3. Digital Pre-PA
- 4.3.1. Overview of DPA Functionality
- 4.3.2. Analysis of DPA Quantization Noise
- 4.3.3. DPA Structural Design
- 4.4. DPA Transistor Mismatches
- 4.4.1. Amplitude Mismatch
- 4.4.2. Phase Mismatch
- 4.5. Key Categories of Mismatches and DEM
- 4.5.1. Key Categories
- 4.5.2. Simulation-Based Specifications
- 4.5.3. Dynamic Element Matching
- 4.5.4. Measurement Results
- 4.6. Clock Delay Alignment
- 4.6.1. Explanation of the Problem
- 4.6.2. Self-Calibration and Compensation Mechanism
- 4.7. Analysis of Parasitic Coupling
- 4.7.1. Possible Coupling Paths
- 4.7.2.A Novel Method of Characterizing EA Parasitic Coupling Using Idle-Tones
- 4.7.3. Relationship Between Idle Tones and E A Parasitic Coupling
- ch. 5 Simulation and Measurement Results of the Polar Transmitter
- 5.1. Simulation Results
- 5.2. Measurement Results
- 5.2.1. Predistortion
- 5.2.2. Transmitter Close-In Performance
- Note continued: 5.2.3. Transmitter Wideband Noise Performance
- 5.2.4. Performance Comparison
- 5.3. Conclusion
- ch. 6 Idea of All-Digital I/Q Modulator
- 6.1. Concept of Digital I/Q Transmitter
- 6.2. Orthogonal Summing Operation of RFDAC
- 6.3. Conclusion
- ch. 7 Orthogonal Summation: A 2 x 3-Bit All-Digital l/Q RFDAC
- 7.1. Circuit Building Blocks of Digital I/Q Modulator
- 7.1.1. Digitally Controlled Oscillator
- 7.1.2. Divide-By-Two Circuit
- 7.1.3.25% Duty Cycle Generator
- 7.1.4. Sign Bit Circuit
- 7.1.5. Implicit Mixer Circuit
- 7.1.6.2 x 3-Bit I/Q Switch Array Circuits
- 7.2. Measurement Results
- 7.3. Conclusion
- ch. 8 Toward High-Resolution RFDAC: The System Design Perspective
- 8.1. System Design Considerations
- 8.2. Conclusion
- ch. 9 Differential I/Q DPA and Power-Combining Network
- 9.1. Idealized Power Combiner With Different DRACs
- 9.2.A Differential I/Q Class-E Based Power Combiner
- 9.3. Efficiency of I/Q RFDAC
- Note continued: 9.4. Effect of Rise/Fall Time and Duty Cycle
- 9.5. Efficiency and Noise at Back-Off Levels
- 9.6. Design an Efficient Balun for Power Combiner
- 9.7. Conclusion
- ch. 10 A Wideband 2 x 13-Bit All-Digital I/Q RFDAC
- 10.1. Clock Input Transformer
- 10.2. High-Speed Rail-to-Rail Differential Dividers
- 10.3.Complementary Quadrature Sign Bit
- 10.4. Differential Quadrature 25% Duty Cycle Generator
- 10.5. Floorplanning of 2 x 13-Bit DRAC
- 10.6. Thermometer Encoders of 3-to-7 and 4-to-15
- 10.7. DRAC Unit Cell: MSB and LSB
- 10.8. MSB/LSB Selection Choices
- 10.9. Digital I/Q Calibration and DPD Techniques
- 10.9.1. IQ Image and Leakage Suppression
- 10.9.2. DPD Based on AM-AM and AM-PM Profiles
- 10.9.3. DPD Based on I/Q Code Mapping
- 10.9.4. DPD Required Memory and Time
- 10.9.5. DPD Effectiveness Against the Temperature and Aging
- 10.9.6. Verification of DPD I/Q Code Mapping
- 10.10. Conclusion
- Note continued: ch. 11 Measurement Results of the 2 x 13-Bit I/Q RFDAC
- 11.1. Measurement Setup
- 11.2. Static Measurement Results
- 11.3. Dynamic Measurement Results
- 11.3.1. LO Leakage and IQ Image Suppression of I/Q RFDAC
- 11.3.2. The RFDAC's Linearity Using AM-AM/AM-PM Profiles
- 11.3.3. The RFDAC's Linearity Using Constellation Mapping
- 11.4. Conclusion
- ch. 12 Future of RFDAC
- 12.1. The Outcome
- 12.2. Some Suggestions for Future Developments
- 12.3. Future Trends
- Appendix A Appendix for the Polar Transmitter
- A.1. EDGE Modulation
- A.1.1. Symbol Mapping and Rotation
- A.1.2. Pulse Shaping Filter and Modulation
- A.2. RF System Specifications for the EDGE Transmitter
- A.3. Details of the Simulation Model
- A.3.1. Digital Amplitude and Phase Data Generation
- A.3.2. RF Front-End Model
- Appendix B Appendix for I/Q RFDAC
- B.1. Universal Asynchronous Receiver/Transmitter
- B.2. Matching Network Equations
- B.3. AM-AM/AM-PM Relationship