|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn962753358 |
003 |
OCoLC |
005 |
20231120112152.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
161116s2016 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d EBLCP
|d YDX
|d OPELS
|d OCLCF
|d IDB
|d OCLCQ
|d WTU
|d OTZ
|d CNCGM
|d OCLCQ
|d U3W
|d MERUC
|d D6H
|d OCLCQ
|d EZ9
|d OCLCQ
|d WYU
|d MERER
|d OCLCQ
|d LQU
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d VT2
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB6E5917
|2 bnb
|
016 |
7 |
|
|a 018075588
|2 Uk
|
019 |
|
|
|a 962840668
|a 964529140
|a 967028571
|a 967571204
|a 969416542
|a 975020862
|a 975078454
|a 978769254
|a 1066466898
|a 1105197667
|a 1105561169
|a 1151750353
|a 1235827770
|
020 |
|
|
|a 9780081010907
|q (electronic bk.)
|
020 |
|
|
|a 0081010907
|q (electronic bk.)
|
020 |
|
|
|z 1785481436
|
020 |
|
|
|z 9781785481437
|
035 |
|
|
|a (OCoLC)962753358
|z (OCoLC)962840668
|z (OCoLC)964529140
|z (OCoLC)967028571
|z (OCoLC)967571204
|z (OCoLC)969416542
|z (OCoLC)975020862
|z (OCoLC)975078454
|z (OCoLC)978769254
|z (OCoLC)1066466898
|z (OCoLC)1105197667
|z (OCoLC)1105561169
|z (OCoLC)1151750353
|z (OCoLC)1235827770
|
050 |
|
4 |
|a QA379
|b .H46 2016eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.35
|2 23
|
100 |
1 |
|
|a Henry, J.
|q (Jacques),
|e author.
|
245 |
1 |
0 |
|a Factorization of boundary value problems using the invariant embedding method /
|c Jacques Henry, Angel M. Ramos.
|
264 |
|
1 |
|a London :
|b ISTE Press Ltd ;
|a Kidlington, Oxford :
|b Elsevier Ltd,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource (xvii, 238 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics and statistics
|
504 |
|
|
|a Includes bibliographical references (pages 223-236) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover ; Dedication ; Factorization of Boundary Value Problems Using the Invariant Embedding Method; Copyright ; Contents; Preface; Chapter 1. Presentation of the Formal Computation of Factorization; 1.1. Definition of the model problem and its functional framework; 1.2. Direct invariant embedding; 1.3. Backward invariant embedding; 1.4. Internal invariant embedding; Chapter 2. Justification of the Factorization Computation; 2.1. Functional framework; 2.2. Semi-discretization; 2.3. Passing to the limit; Chapter 3. Complements to the Model Problem.
|
505 |
8 |
|
|a 3.1. An alternative method for obtaining the factorization3.2. Other boundary conditions; 3.3. Explicitly taking into account the boundary conditions and the right-hand side; 3.4. Periodic boundary conditions in x; 3.5. An alternative but unstable formulation; 3.6. Link with the Steklov-Poincar�e operator; 3.7. Application of the Schwarz kernel theorem: link with Green's functions and Hadamard's formula; Chapter 4. Interpretation of the Factorization through a Control Problem; 4.1. Formulation of problem (P0) in terms of optimal control.
|
505 |
8 |
|
|a 4.2. Summary of results on the decoupling of optimal control problems4.3. Summary of results of A. Bensoussan on Kalman optimal filtering; 4.4. Parabolic regularization for the factorization of elliptic boundary value problems; Chapter 5. Factorization of the Discretized Problem; 5.1. Introduction and problem statement; 5.2. Application of the factorization method to problem (Ph); 5.3. A second method of discretization; 5.4. A third possibility: centered scheme; 5.5. Row permutation; 5.6. Case of a discretization of the section by finite elements; Chapter 6. Other Problems.
|
505 |
8 |
|
|a 6.1. General second-order linear elliptic problems6.2. Systems of coupled boundary value problems; 6.3. Linear elasticity system; 6.4. Problems of order higher than 2; 6.5. Stokes problems; 6.6. Parabolic problems; Chapter 7. Other Shapes of Domain; 7.1. Domain generalization: transformation preserving orthogonal coordinates; 7.2. Quasi-cylindrical domains with normal velocity fields; 7.3. Sweeping the domain by surfaces of arbitrary shape; Chapter 8. Factorization by the QR Method; 8.1. Normal equation for problem (P0) in section 1.1.
|
505 |
8 |
|
|a 8.2. Factorization of the normal equation by invariant embedding8.3. The QR method; Chapter 9. Representation Formulas for Solutions of Riccati Equations; 9.1. Representation formulas; 9.2. Diagonalization of the two-point boundary value problem; 9.3. Homographic representation of P(x); 9.4. Factorization of problem (P0) with a Dirichlet condition at x =0; Appendix. Gaussian LU Factorization as a Method of Invariant Embedding; A.1. Invariant embedding for a linear system; A.2. Block tridiagonal systems; Bibliography; Index; Back Cover.
|
650 |
|
0 |
|a Boundary value problems.
|
650 |
|
0 |
|a Factorization (Mathematics)
|
650 |
|
0 |
|a Invariant imbedding.
|
650 |
|
6 |
|a Probl�emes aux limites.
|0 (CaQQLa)201-0019897
|
650 |
|
6 |
|a Factorisation.
|0 (CaQQLa)201-0072964
|
650 |
|
6 |
|a Plongement invariant.
|0 (CaQQLa)201-0046701
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Boundary value problems
|2 fast
|0 (OCoLC)fst00837122
|
650 |
|
7 |
|a Factorization (Mathematics)
|2 fast
|0 (OCoLC)fst00919711
|
650 |
|
7 |
|a Invariant imbedding
|2 fast
|0 (OCoLC)fst00977977
|
700 |
1 |
|
|a Ramos, Angel M.,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Henry, J. (Jacques).
|t Factorization of boundary value problems using the invariant embedding method.
|d London : ISTE Press Ltd ; Kidlington, Oxford : Elsevier Ltd, [2016]
|z 1785481436
|w (OCoLC)945105395
|
830 |
|
0 |
|a Mathematics and statistics series (ISTE)
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781785481437
|z Texto completo
|