Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford, United Kingdom :
Elsevier,
2017.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title page; Copyright page; Table of Contents; About the Author; Preface; 1
- Introduction and background; 1.1
- Introduction; 1.2
- Overview of PHM; 1.2.1
- Data Acquisition; 1.2.2
- Signal Processing; 1.2.3
- Diagnostics; 1.2.4
- Prognostics; 1.2.5
- Maintenance Decision; 1.3
- Preface to Book Chapters; References; 2
- Signal processing and feature extraction; 2.1
- Introduction; 2.2
- Signal Preprocessing; 2.2.1
- Trend Removal; 2.2.2
- Signal Filtering; 2.3
- Signal Processing in the Time Domain; 2.3.1
- Correlation Analysis; 2.3.1.1
- Autocorrelation Analysis
- 2.3.1.2
- Cross-Correlation Analysis2.3.2
- Common Statistical Features in the Time Domain; 2.4
- Signal Processing in the Frequency Domain; 2.4.1
- Fourier Transform; 2.4.1.1
- Fourier Series; 2.4.1.2
- Fourier Integral Transform; 2.4.1.3
- Discrete Fourier Transform; 2.4.1.4
- Fast Fourier Transform; 2.4.2
- Common Statistical Features in the Frequency Domain; 2.5
- Signal Processing in the Time-Frequency Domain; 2.5.1
- Short-Time Fourier Transform; 2.5.2
- Wigner-Ville Distribution; 2.5.3
- Wavelet Analysis; 2.5.3.1
- Wavelet Transform; 2.5.3.2
- Wavelet Basis and Fast Pyramidal Algorithm
- 2.5.3.3
- Wavelet Packet Transform2.5.4
- Hilbert-Huang Transform; 2.5.4.1
- Empirical Mode Decomposition; 2.5.4.2
- Ensemble Empirical Mode Decomposition; 2.5.4.3
- Hilbert Transform; 2.5.5
- Common Feature Extraction in the Time-Frequency Domain; 2.6
- Conclusions; References; 3
- Individual intelligent method-based fault diagnosis; 3.1
- Introduction to Intelligent Diagnosis Methods; 3.2
- Artificial Neural Networks; 3.2.1
- Introduction to Artificial Neural Networks; 3.2.1.1
- Architecture of Neural Networks; 3.2.1.2
- Backpropagation Algorithm; 3.2.1.3
- Speeding up the Backpropagation
- 3.2.1.4
- Epilog3.2.2
- Radial Basis Function Network-Based Fault Diagnosis; 3.2.2.1
- Introduction; 3.2.2.2
- Radial Basis Function Network; 3.2.2.3
- Fault Diagnosis Method Based on RBF Network; 3.2.2.4
- Intelligent Diagnosis of Bearing Faults: An Experimental Case Study; 3.2.2.5
- Intelligent Diagnosis of Rub Faults: A Heavy Oil Catalytic Cracking Unit Case Study; 3.2.2.6
- Epilog; 3.2.3
- Wavelet Neural Network-Based Fault Diagnosis; 3.2.3.1
- Introduction; 3.2.3.2
- Wavelet Neural Network; 3.2.3.3
- Sensitive IMF Selection and Feature Extraction
- 3.2.3.4
- WNN-Based Fault Diagnosis Method3.2.3.5
- Intelligent Diagnosis of the Compound Faults: A Bearing Case Study; 3.2.3.6
- Epilog; 3.2.4
- Adaptive Neuro-Fuzzy Inference System-Based Fault Diagnosis; 3.2.4.1
- Introduction; 3.2.4.2
- Adaptive Neuro-Fuzzy Inference System; 3.2.4.3
- Diagnosis Method With Multisensor Data Fusion; 3.2.4.4
- Intelligent Diagnosis of Gear Faults: A Planetary Gearbox Case Study; 3.2.4.5
- Epilog; 3.3
- Statistical Learning Theory; 3.3.1
- Introduction to Statistical Learning Theory; 3.3.2
- Support Vector Machine-Based Fault Diagnosis Method
- 3.3.2.1
- Introduction