|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn962413143 |
003 |
OCoLC |
005 |
20231120112152.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
161109s2016 enk ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e rda
|e pn
|c IDEBK
|d N$T
|d YDX
|d EBLCP
|d NLE
|d OCLCO
|d COO
|d OCLCF
|d N$T
|d OPELS
|d NRC
|d UPM
|d OCLCQ
|d VT2
|d OTZ
|d OCLCQ
|d D6H
|d U3W
|d UOK
|d ESU
|d ABC
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|
019 |
|
|
|a 962303064
|a 962324409
|
020 |
|
|
|a 0128115351
|q (electronic bk.)
|
020 |
|
|
|a 9780128115350
|q (electronic bk.)
|
020 |
|
|
|z 9780128115343
|
020 |
|
|
|z 0128115343
|
035 |
|
|
|a (OCoLC)962413143
|z (OCoLC)962303064
|z (OCoLC)962324409
|
050 |
|
4 |
|a TJ1058
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.31042
|2 23
|
100 |
1 |
|
|a Lei, Yaguo,
|e author.
|
245 |
1 |
0 |
|a Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery /
|c Yaguo Lei.
|
264 |
|
1 |
|a Oxford, United Kingdom :
|b Elsevier,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover; Title page; Copyright page; Table of Contents; About the Author; Preface; 1 -- Introduction and background; 1.1 -- Introduction; 1.2 -- Overview of PHM; 1.2.1 -- Data Acquisition; 1.2.2 -- Signal Processing; 1.2.3 -- Diagnostics; 1.2.4 -- Prognostics; 1.2.5 -- Maintenance Decision; 1.3 -- Preface to Book Chapters; References; 2 -- Signal processing and feature extraction; 2.1 -- Introduction; 2.2 -- Signal Preprocessing; 2.2.1 -- Trend Removal; 2.2.2 -- Signal Filtering; 2.3 -- Signal Processing in the Time Domain; 2.3.1 -- Correlation Analysis; 2.3.1.1 -- Autocorrelation Analysis
|
505 |
8 |
|
|a 2.3.1.2 -- Cross-Correlation Analysis2.3.2 -- Common Statistical Features in the Time Domain; 2.4 -- Signal Processing in the Frequency Domain; 2.4.1 -- Fourier Transform; 2.4.1.1 -- Fourier Series; 2.4.1.2 -- Fourier Integral Transform; 2.4.1.3 -- Discrete Fourier Transform; 2.4.1.4 -- Fast Fourier Transform; 2.4.2 -- Common Statistical Features in the Frequency Domain; 2.5 -- Signal Processing in the Time-Frequency Domain; 2.5.1 -- Short-Time Fourier Transform; 2.5.2 -- Wigner-Ville Distribution; 2.5.3 -- Wavelet Analysis; 2.5.3.1 -- Wavelet Transform; 2.5.3.2 -- Wavelet Basis and Fast Pyramidal Algorithm
|
505 |
8 |
|
|a 2.5.3.3 -- Wavelet Packet Transform2.5.4 -- Hilbert-Huang Transform; 2.5.4.1 -- Empirical Mode Decomposition; 2.5.4.2 -- Ensemble Empirical Mode Decomposition; 2.5.4.3 -- Hilbert Transform; 2.5.5 -- Common Feature Extraction in the Time-Frequency Domain; 2.6 -- Conclusions; References; 3 -- Individual intelligent method-based fault diagnosis; 3.1 -- Introduction to Intelligent Diagnosis Methods; 3.2 -- Artificial Neural Networks; 3.2.1 -- Introduction to Artificial Neural Networks; 3.2.1.1 -- Architecture of Neural Networks; 3.2.1.2 -- Backpropagation Algorithm; 3.2.1.3 -- Speeding up the Backpropagation
|
505 |
8 |
|
|a 3.2.1.4 -- Epilog3.2.2 -- Radial Basis Function Network-Based Fault Diagnosis; 3.2.2.1 -- Introduction; 3.2.2.2 -- Radial Basis Function Network; 3.2.2.3 -- Fault Diagnosis Method Based on RBF Network; 3.2.2.4 -- Intelligent Diagnosis of Bearing Faults: An Experimental Case Study; 3.2.2.5 -- Intelligent Diagnosis of Rub Faults: A Heavy Oil Catalytic Cracking Unit Case Study; 3.2.2.6 -- Epilog; 3.2.3 -- Wavelet Neural Network-Based Fault Diagnosis; 3.2.3.1 -- Introduction; 3.2.3.2 -- Wavelet Neural Network; 3.2.3.3 -- Sensitive IMF Selection and Feature Extraction
|
505 |
8 |
|
|a 3.2.3.4 -- WNN-Based Fault Diagnosis Method3.2.3.5 -- Intelligent Diagnosis of the Compound Faults: A Bearing Case Study; 3.2.3.6 -- Epilog; 3.2.4 -- Adaptive Neuro-Fuzzy Inference System-Based Fault Diagnosis; 3.2.4.1 -- Introduction; 3.2.4.2 -- Adaptive Neuro-Fuzzy Inference System; 3.2.4.3 -- Diagnosis Method With Multisensor Data Fusion; 3.2.4.4 -- Intelligent Diagnosis of Gear Faults: A Planetary Gearbox Case Study; 3.2.4.5 -- Epilog; 3.3 -- Statistical Learning Theory; 3.3.1 -- Introduction to Statistical Learning Theory; 3.3.2 -- Support Vector Machine-Based Fault Diagnosis Method
|
505 |
8 |
|
|a 3.3.2.1 -- Introduction
|
504 |
|
|
|a Includes bibliographical references at the end of each chapters and index.
|
650 |
|
0 |
|a Electric machinery
|x Rotors.
|
650 |
|
0 |
|a Fault location (Engineering)
|
650 |
|
0 |
|a Expert systems (Computer science)
|
650 |
|
6 |
|a D�etection de d�efaut (Ing�enierie)
|0 (CaQQLa)201-0138143
|
650 |
|
6 |
|a Syst�emes experts (Informatique)
|0 (CaQQLa)201-0124822
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Electric machinery
|x Rotors.
|2 fast
|0 (OCoLC)fst00905198
|
650 |
|
7 |
|a Expert systems (Computer science)
|2 fast
|0 (OCoLC)fst00918516
|
650 |
|
7 |
|a Fault location (Engineering)
|2 fast
|0 (OCoLC)fst00921982
|
776 |
0 |
8 |
|i Print version:
|a Lei, Yaguo.
|t Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery.
|d Oxford, United Kingdom : Elsevier, 2017
|z 0128115343
|z 9780128115343
|w (OCoLC)952647304
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128115343
|z Texto completo
|