Cargando…

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lei, Yaguo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, United Kingdom : Elsevier, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn962413143
003 OCoLC
005 20231120112152.0
006 m o d
007 cr |||||||||||
008 161109s2016 enk ob 001 0 eng d
040 |a IDEBK  |b eng  |e rda  |e pn  |c IDEBK  |d N$T  |d YDX  |d EBLCP  |d NLE  |d OCLCO  |d COO  |d OCLCF  |d N$T  |d OPELS  |d NRC  |d UPM  |d OCLCQ  |d VT2  |d OTZ  |d OCLCQ  |d D6H  |d U3W  |d UOK  |d ESU  |d ABC  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ 
019 |a 962303064  |a 962324409 
020 |a 0128115351  |q (electronic bk.) 
020 |a 9780128115350  |q (electronic bk.) 
020 |z 9780128115343 
020 |z 0128115343 
035 |a (OCoLC)962413143  |z (OCoLC)962303064  |z (OCoLC)962324409 
050 4 |a TJ1058 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.31042  |2 23 
100 1 |a Lei, Yaguo,  |e author. 
245 1 0 |a Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery /  |c Yaguo Lei. 
264 1 |a Oxford, United Kingdom :  |b Elsevier,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Cover; Title page; Copyright page; Table of Contents; About the Author; Preface; 1 -- Introduction and background; 1.1 -- Introduction; 1.2 -- Overview of PHM; 1.2.1 -- Data Acquisition; 1.2.2 -- Signal Processing; 1.2.3 -- Diagnostics; 1.2.4 -- Prognostics; 1.2.5 -- Maintenance Decision; 1.3 -- Preface to Book Chapters; References; 2 -- Signal processing and feature extraction; 2.1 -- Introduction; 2.2 -- Signal Preprocessing; 2.2.1 -- Trend Removal; 2.2.2 -- Signal Filtering; 2.3 -- Signal Processing in the Time Domain; 2.3.1 -- Correlation Analysis; 2.3.1.1 -- Autocorrelation Analysis 
505 8 |a 2.3.1.2 -- Cross-Correlation Analysis2.3.2 -- Common Statistical Features in the Time Domain; 2.4 -- Signal Processing in the Frequency Domain; 2.4.1 -- Fourier Transform; 2.4.1.1 -- Fourier Series; 2.4.1.2 -- Fourier Integral Transform; 2.4.1.3 -- Discrete Fourier Transform; 2.4.1.4 -- Fast Fourier Transform; 2.4.2 -- Common Statistical Features in the Frequency Domain; 2.5 -- Signal Processing in the Time-Frequency Domain; 2.5.1 -- Short-Time Fourier Transform; 2.5.2 -- Wigner-Ville Distribution; 2.5.3 -- Wavelet Analysis; 2.5.3.1 -- Wavelet Transform; 2.5.3.2 -- Wavelet Basis and Fast Pyramidal Algorithm 
505 8 |a 2.5.3.3 -- Wavelet Packet Transform2.5.4 -- Hilbert-Huang Transform; 2.5.4.1 -- Empirical Mode Decomposition; 2.5.4.2 -- Ensemble Empirical Mode Decomposition; 2.5.4.3 -- Hilbert Transform; 2.5.5 -- Common Feature Extraction in the Time-Frequency Domain; 2.6 -- Conclusions; References; 3 -- Individual intelligent method-based fault diagnosis; 3.1 -- Introduction to Intelligent Diagnosis Methods; 3.2 -- Artificial Neural Networks; 3.2.1 -- Introduction to Artificial Neural Networks; 3.2.1.1 -- Architecture of Neural Networks; 3.2.1.2 -- Backpropagation Algorithm; 3.2.1.3 -- Speeding up the Backpropagation 
505 8 |a 3.2.1.4 -- Epilog3.2.2 -- Radial Basis Function Network-Based Fault Diagnosis; 3.2.2.1 -- Introduction; 3.2.2.2 -- Radial Basis Function Network; 3.2.2.3 -- Fault Diagnosis Method Based on RBF Network; 3.2.2.4 -- Intelligent Diagnosis of Bearing Faults: An Experimental Case Study; 3.2.2.5 -- Intelligent Diagnosis of Rub Faults: A Heavy Oil Catalytic Cracking Unit Case Study; 3.2.2.6 -- Epilog; 3.2.3 -- Wavelet Neural Network-Based Fault Diagnosis; 3.2.3.1 -- Introduction; 3.2.3.2 -- Wavelet Neural Network; 3.2.3.3 -- Sensitive IMF Selection and Feature Extraction 
505 8 |a 3.2.3.4 -- WNN-Based Fault Diagnosis Method3.2.3.5 -- Intelligent Diagnosis of the Compound Faults: A Bearing Case Study; 3.2.3.6 -- Epilog; 3.2.4 -- Adaptive Neuro-Fuzzy Inference System-Based Fault Diagnosis; 3.2.4.1 -- Introduction; 3.2.4.2 -- Adaptive Neuro-Fuzzy Inference System; 3.2.4.3 -- Diagnosis Method With Multisensor Data Fusion; 3.2.4.4 -- Intelligent Diagnosis of Gear Faults: A Planetary Gearbox Case Study; 3.2.4.5 -- Epilog; 3.3 -- Statistical Learning Theory; 3.3.1 -- Introduction to Statistical Learning Theory; 3.3.2 -- Support Vector Machine-Based Fault Diagnosis Method 
505 8 |a 3.3.2.1 -- Introduction 
504 |a Includes bibliographical references at the end of each chapters and index. 
650 0 |a Electric machinery  |x Rotors. 
650 0 |a Fault location (Engineering) 
650 0 |a Expert systems (Computer science) 
650 6 |a D�etection de d�efaut (Ing�enierie)  |0 (CaQQLa)201-0138143 
650 6 |a Syst�emes experts (Informatique)  |0 (CaQQLa)201-0124822 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Electric machinery  |x Rotors.  |2 fast  |0 (OCoLC)fst00905198 
650 7 |a Expert systems (Computer science)  |2 fast  |0 (OCoLC)fst00918516 
650 7 |a Fault location (Engineering)  |2 fast  |0 (OCoLC)fst00921982 
776 0 8 |i Print version:  |a Lei, Yaguo.  |t Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery.  |d Oxford, United Kingdom : Elsevier, 2017  |z 0128115343  |z 9780128115343  |w (OCoLC)952647304 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128115343  |z Texto completo