|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn960976559 |
003 |
OCoLC |
005 |
20231120112146.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
161021t20162017enk o 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d OPELS
|d EBLCP
|d N$T
|d UIU
|d OCLCF
|d OCLCQ
|d IDB
|d OCLCQ
|d OTZ
|d YDX
|d OCLCQ
|d U3W
|d MERUC
|d D6H
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 961206493
|
020 |
|
|
|a 0128024992
|q (electronic bk.)
|
020 |
|
|
|a 9780128024997
|q (electronic bk.)
|
020 |
|
|
|z 9780128022603
|
020 |
|
|
|z 0128022604
|
035 |
|
|
|a (OCoLC)960976559
|z (OCoLC)961206493
|
050 |
|
4 |
|a RA639
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.901/5118
|2 23
|
100 |
1 |
|
|a Foppa, Ivo M.
|
245 |
1 |
2 |
|a A historical introduction to mathematical modeling of infectious diseases :
|b seminal papers in epidemiology /
|c Ivo M. Foppa.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2016, �2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; A Historical Introduction to Mathematical Modeling of Infectious Diseases; Copyright; Dedication; Contents; Introduction; Motivation and short history (of this book); Structure and suggested use of the book; Target audience; Mathematical background; Miscellaneous remarks; References; Acknowledgments; 1 D. Bernoulli: A pioneer of epidemiologic modeling (1760); 1.1 Bernoulli and the speckled monster -- 1.1.1 1 through 4: Preamble; 1.1.2 5 through 6: Mathematical foundation; 1.1.3 7 through 9: Table 1; 1.1.4 11 & 12: Table 2.
|
505 |
8 |
|
|a 1.1.5 13: Closed form solution for the counterfactual survivorsAppendix 1.A Answers; Appendix 1.B Supplementary material; References; 2 P.D. En'ko: An early transmission model (1889); 2.1 Introduction; 2.2 Assumptions; 2.3 The model; 2.4 Simulation model; 2.4.1 Start of the simulation; 2.4.2 Discussion of Table 1 and Figures; 2.4.3 An important detail: The period; Appendix 2.A Answers; Appendix 2.B Supplementary material; References; 3 W.H. Hamer (1906) and H. Soper (1929): Why diseases come and go; 3.1 Introduction; 3.2 Hamer: Variability and persistence; 3.2.1 A tortuous introduction.
|
505 |
8 |
|
|a 3.2.2 Characteristic of periodic measles epidemics3.2.3 The case of influenza; 3.3 Soper: Periodicity in disease prevalence; Regeneration of the population; Law of infection -- Mass action; 3.3.1 Infection dynamics; 3.3.2 The simulated epidemic; 3.3.3 Periods; 3.3.4 Considerations of seasonal factors and model fit to Glasgow data; Appendix 3.A ; The discussion; Appendix 3.B Answers; Appendix 3.C Supplementary material; References; 4 W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927); 4.1 Introduction.
|
505 |
8 |
|
|a 4.2 General theory: (2) through (7)4.2.1 (2): The infection process in discrete time; 4.2.2 (3): The infection process in continuous time; 4.2.3 (6): The proportion infected ; 4.3 Special cases: (8) through (13); 4.3.1 (10): The Kermack & McKendrick model -- 4.3.2 (12): Extension to vector-borne diseases; Appendix 4.A ; Appendix 4.B Answers; Appendix 4.C Supplementary material; References; 5 R. Ross (1910, 1911) and G. Macdonald (1952) on the persistence of malaria; 5.1 Introduction; 5.2 Ross: What keeps malaria going?; 5.2.1 Laws which Regulate the Amount of Malaria in a Locality
|
505 |
8 |
|
|a 5.2.2 Final remarks on Ross's modeling contributions5.3 George Macdonald: Malaria equilibrium beyond Ross; 5.3.1 A linear model; 5.3.2 The basic reproduction rate of malaria -- 5.3.3 Comparing Ross's-implicit-and Macdonald's R0 for malaria; Appendix 5.A Answers; References; 6 M. Bartlett (1949), N.T. Bailey (1950, 1953) and P. Whittle (1955): Pioneers of stochastic transmission models; 6.1 Introduction: Stochastic transmission models; 6.2 Bailey: A simple stochastic transmission model; 6.2.1 Deterministic approach; 6.2.2 Stochastic approach.
|
650 |
|
0 |
|a Communicable diseases
|x Transmission
|x Mathematical models.
|
650 |
|
6 |
|a Maladies infectieuses
|0 (CaQQLa)201-0017139
|x Transmission
|0 (CaQQLa)201-0017139
|x Mod�eles math�ematiques.
|0 (CaQQLa)201-0379082
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Communicable diseases
|x Transmission
|x Mathematical models
|2 fast
|0 (OCoLC)fst00869924
|
776 |
0 |
8 |
|i Print version:
|a Foppa, Ivo M.
|t Historical introduction to mathematical modeling of infectious diseases.
|d London : Academic Press, 2016, �2017
|z 9780128022603
|z 0128022604
|w (OCoLC)952385609
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128022603
|z Texto completo
|