Cargando…

A historical introduction to mathematical modeling of infectious diseases : seminal papers in epidemiology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Foppa, Ivo M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2016, �2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn960976559
003 OCoLC
005 20231120112146.0
006 m o d
007 cr |n|||||||||
008 161021t20162017enk o 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OPELS  |d EBLCP  |d N$T  |d UIU  |d OCLCF  |d OCLCQ  |d IDB  |d OCLCQ  |d OTZ  |d YDX  |d OCLCQ  |d U3W  |d MERUC  |d D6H  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961206493 
020 |a 0128024992  |q (electronic bk.) 
020 |a 9780128024997  |q (electronic bk.) 
020 |z 9780128022603 
020 |z 0128022604 
035 |a (OCoLC)960976559  |z (OCoLC)961206493 
050 4 |a RA639 
072 7 |a HEA  |x 039000  |2 bisacsh 
072 7 |a MED  |x 014000  |2 bisacsh 
072 7 |a MED  |x 022000  |2 bisacsh 
072 7 |a MED  |x 112000  |2 bisacsh 
072 7 |a MED  |x 045000  |2 bisacsh 
082 0 4 |a 616.901/5118  |2 23 
100 1 |a Foppa, Ivo M. 
245 1 2 |a A historical introduction to mathematical modeling of infectious diseases :  |b seminal papers in epidemiology /  |c Ivo M. Foppa. 
260 |a London :  |b Academic Press,  |c 2016, �2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Front Cover; A Historical Introduction to Mathematical Modeling of Infectious Diseases; Copyright; Dedication; Contents; Introduction; Motivation and short history (of this book); Structure and suggested use of the book; Target audience; Mathematical background; Miscellaneous remarks; References; Acknowledgments; 1 D. Bernoulli: A pioneer of epidemiologic modeling (1760); 1.1 Bernoulli and the speckled monster -- 1.1.1 1 through 4: Preamble; 1.1.2 5 through 6: Mathematical foundation; 1.1.3 7 through 9: Table 1; 1.1.4 11 & 12: Table 2. 
505 8 |a 1.1.5 13: Closed form solution for the counterfactual survivorsAppendix 1.A Answers; Appendix 1.B Supplementary material; References; 2 P.D. En'ko: An early transmission model (1889); 2.1 Introduction; 2.2 Assumptions; 2.3 The model; 2.4 Simulation model; 2.4.1 Start of the simulation; 2.4.2 Discussion of Table 1 and Figures; 2.4.3 An important detail: The period; Appendix 2.A Answers; Appendix 2.B Supplementary material; References; 3 W.H. Hamer (1906) and H. Soper (1929): Why diseases come and go; 3.1 Introduction; 3.2 Hamer: Variability and persistence; 3.2.1 A tortuous introduction. 
505 8 |a 3.2.2 Characteristic of periodic measles epidemics3.2.3 The case of influenza; 3.3 Soper: Periodicity in disease prevalence; Regeneration of the population; Law of infection -- Mass action; 3.3.1 Infection dynamics; 3.3.2 The simulated epidemic; 3.3.3 Periods; 3.3.4 Considerations of seasonal factors and model fit to Glasgow data; Appendix 3.A ; The discussion; Appendix 3.B Answers; Appendix 3.C Supplementary material; References; 4 W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927); 4.1 Introduction. 
505 8 |a 4.2 General theory: (2) through (7)4.2.1 (2): The infection process in discrete time; 4.2.2 (3): The infection process in continuous time; 4.2.3 (6): The proportion infected ; 4.3 Special cases: (8) through (13); 4.3.1 (10): The Kermack & McKendrick model -- 4.3.2 (12): Extension to vector-borne diseases; Appendix 4.A ; Appendix 4.B Answers; Appendix 4.C Supplementary material; References; 5 R. Ross (1910, 1911) and G. Macdonald (1952) on the persistence of malaria; 5.1 Introduction; 5.2 Ross: What keeps malaria going?; 5.2.1 Laws which Regulate the Amount of Malaria in a Locality 
505 8 |a 5.2.2 Final remarks on Ross's modeling contributions5.3 George Macdonald: Malaria equilibrium beyond Ross; 5.3.1 A linear model; 5.3.2 The basic reproduction rate of malaria -- 5.3.3 Comparing Ross's-implicit-and Macdonald's R0 for malaria; Appendix 5.A Answers; References; 6 M. Bartlett (1949), N.T. Bailey (1950, 1953) and P. Whittle (1955): Pioneers of stochastic transmission models; 6.1 Introduction: Stochastic transmission models; 6.2 Bailey: A simple stochastic transmission model; 6.2.1 Deterministic approach; 6.2.2 Stochastic approach. 
650 0 |a Communicable diseases  |x Transmission  |x Mathematical models. 
650 6 |a Maladies infectieuses  |0 (CaQQLa)201-0017139  |x Transmission  |0 (CaQQLa)201-0017139  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 7 |a HEALTH & FITNESS  |x Diseases  |x General.  |2 bisacsh 
650 7 |a MEDICAL  |x Clinical Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Diseases.  |2 bisacsh 
650 7 |a MEDICAL  |x Evidence-Based Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Internal Medicine.  |2 bisacsh 
650 7 |a Communicable diseases  |x Transmission  |x Mathematical models  |2 fast  |0 (OCoLC)fst00869924 
776 0 8 |i Print version:  |a Foppa, Ivo M.  |t Historical introduction to mathematical modeling of infectious diseases.  |d London : Academic Press, 2016, �2017  |z 9780128022603  |z 0128022604  |w (OCoLC)952385609 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128022603  |z Texto completo