|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
SCIDIR_ocn959536947 |
003 |
OCoLC |
005 |
20231120112139.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160928s2017 enk ob 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d IDEBK
|d EBLCP
|d N$T
|d OPELS
|d OCLCF
|d OCLCQ
|d QCL
|d IDB
|d OCLCQ
|d MERUC
|d U3W
|d D6H
|d OCLCQ
|d LQU
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 959593230
|a 960833431
|a 965413094
|a 1105177625
|a 1105562521
|
020 |
|
|
|a 9780081011355
|q (electronic bk.)
|
020 |
|
|
|a 0081011350
|q (electronic bk.)
|
020 |
|
|
|z 9780128097038
|
020 |
|
|
|z 0128097035
|
035 |
|
|
|a (OCoLC)959536947
|z (OCoLC)959593230
|z (OCoLC)960833431
|z (OCoLC)965413094
|z (OCoLC)1105177625
|z (OCoLC)1105562521
|
050 |
|
4 |
|a TA1637
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.367
|2 23
|
100 |
1 |
|
|a Salvador, Jordi.
|
245 |
1 |
0 |
|a Example-based Super Resolution.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Front Cover; Example-Based Super Resolution; Copyright; Dedication; Contents; List of Figures; Acknowledgment; Introduction; The Super-Resolution Problem; Super-Resolution Approaches; Interpolation; Multiframe Super Resolution; Example-Based Super Resolution; Outline; About the Book; Chapter 1: Classic Multiframe Super Resolution; 1.1 Problem Statement; 1.1.1 A Frequency-Domain Pipeline; 1.2 Bayesian Inference; 1.2.1 Maximum Likelihood; 1.2.2 Maximum A Posteriori; 1.3 Interpolation-Based Methods; 1.3.1 Registration; 1.3.2 Warping Projection; Forward Warping; Backward Warping.
|
505 |
8 |
|
|a 1.3.3 RestorationInpainting; Deblurring; Denoising; Iterative Reconstruction; 1.4 Performance Limits; 1.5 Discussion; Chapter 2: A Taxonomy of Example-Based Super Resolution; 2.1 Example-Based Super Resolution; 2.1.1 Parametric Methods; 2.1.2 Nonparametric Methods; 2.2 Internal Learning; 2.2.1 High-Frequency Transfer; 2.2.2 Neighbor Embedding; 2.3 External Learning; 2.3.1 Sparse Coding; 2.3.2 Anchored Regression; 2.3.3 Regression Trees; 2.3.4 Deep Learning; 2.4 Discussion; Chapter 3: High-Frequency Transfer; 3.1 Adaptive Filter Selection; 3.1.1 Parametric Filter Design; Implementation Notes.
|
505 |
8 |
|
|a 3.1.2 Performance3.2 Robustness to Aliasing; 3.2.1 Local Regularization; High-Contrast Edge Detection, Dilation and Scaling; Local Denoising; Locally Regularized HF Synthesis; 3.2.2 Performance; 3.3 Robustness to Noise; 3.3.1 In-Place Cross-Scale Self-Similarity; In-place Structure Similarity; Noisy In-place Self-Similarity; 3.3.2 Iterative Noise-Aware Super Resolution; Interpolation; Analysis; Learning; Reconstruction; Implementation Details; 3.3.3 Performance; Processing Time; 3.4 Discussion; Chapter 4: Neighbor Embedding; 4.1 Framework; 4.1.1 Problem Statement.
|
505 |
8 |
|
|a 4.1.2 Internal vs. External LearningInternal Learning; External Learning; 4.2 Extensions; 4.2.1 Multiphase Neighbor Embeddings; Pipeline; Complexity; 4.2.2 Nonnegative Least Squares; Features; Method; 4.3 Performance; 4.3.1 Configuration; Internal vs. External Learning; 4.3.2 Benchmark; 4.4 Discussion; Chapter 5: Sparse Coding; 5.1 Super Resolution Model; 5.1.1 Sparse Reconstruction; 5.1.2 Dictionary Training; Joint Training; Single-Scale Training; 5.2 Adaptive Extension; 5.2.1 Training Region Selection; 5.2.2 Region Rejection; 5.3 Application; 5.3.1 Feature Space; 5.3.2 Performance.
|
505 |
8 |
|
|a Training and Testing SetsComparison With Other Methods; 5.4 Discussion; Chapter 6: Anchored Regression; 6.1 Anchored Regression Framework; 6.1.1 Problem Statement; 6.1.2 Anchored Neighbors; 6.1.3 Inference by Linear Regression; Features; 6.2 Extensions; 6.2.1 Improved Accuracy; 6.2.2 Improved Runtime; 6.3 Performance; 6.3.1 Implementation Details; Coarse Approximation; Feature Vectors; Supervised Learning; Hashing; 6.3.2 Benchmarking; Quality; Computational Cost; 6.4 Discussion; Chapter 7: Trees and Forests; 7.1 Hierarchical Manifold Learning; Contrast Normalization; Unimodal Trees.
|
650 |
|
0 |
|a High resolution imaging.
|
650 |
|
6 |
|a Imagerie �a haute r�esolution.
|0 (CaQQLa)000276081
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a High resolution imaging
|2 fast
|0 (OCoLC)fst01763322
|
776 |
0 |
8 |
|i Print version:
|z 9780128097038
|z 0128097035
|w (OCoLC)953707986
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128097038
|z Texto completo
|