Land surface remote sensing in urban and coastal areas /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
ISTE,
2016.
|
Colección: | Remote sensing observations of continental surfaces set.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Ch. 1 Optical Remote Sensing in Urban Environments / Christiane Weber
- 1.1. Introduction
- 1.1.1. The urban system
- 1.1.2. The urban environment
- 1.1.3. The main characteristics of the urban environment: geometric, spectral and temporal
- 1.1.4. Optical properties of urban materials
- 1.1.5. Spectral characteristics
- 1.2. Main applications of optical remote sensing in urban environments
- 1.2.1. The use of very high spatial resolution multispectral imaging (VHR) for urban mapping and planning
- 1.2.2. Biodiversity (blue belt and green belt) and vegetation detection in cities
- 1.2.3. Urban heat islands
- 1.3. Conclusions and prospects
- 1.4. Key points
- 1.5. Bibliography
- ch. 2 Urban Scene Analysis with Mobile Mapping Technology / Clement Mallet
- 2.1. Introduction
- 2.2. Data acquisition
- 2.2.1. Sensors onboard a mobile mapping system
- 2.2.2. Integrating sensors
- 2.2.3. Geometric calibration
- 2.2.4. Specificities of MMT data
- 2.3. Data registration and georeferencing
- 2.3.1. Characteristics of the registration procedure
- 2.3.2. Deformation models
- 2.3.3. Pairing methods
- 2.3.4. Pose estimation
- 2.4. Analyzing urban scenes
- 2.4.1. Local descriptors
- 2.4.2. Segmentation and classification of 3D point clouds
- 2.4.3. Object recognition
- 2.4.4. Reconstruction
- 2.4.5. Texturing
- 2.4.6. 3D change detection
- 2.5. Prospects
- 2.5.1. Uncertainty Management
- 2.5.2. Image/laser fusion
- 2.5.3. Semantization as segmentation/classification coupling
- 2.5.4. Surface reconstruction and semantization coupling
- 2.5.5. Fusion of aerial and terrestrial data
- 2.6. Key points
- 2.7. Bibliography
- ch. 3 Satellite Imagery: a Tool for Territorial Development / Pierre Maurel
- 3.1. Introduction
- 3.2. Sustainable territorial development, decision-making and information
- 3.2.1. Regional policies
- 3.2.2. Territorial development process
- 3.2.3. Territorial socio-technical dispositive/apparatus of information and communication
- 3.2.4. Functions supporting the territorial decision process
- 3.3. Spatial representations derived from remote sensing
- 3.4. STICA based on spatial representations at the service of integrated land management
- 3.4.1. Thau territory and the challenge of urban sprawl
- 3.4.2. Use of spatial information for land management in Madagascar
- 3.5. Conclusions
- 3.6. Key points
- 3.7. Bibliography
- ch. 4 Remote Sensing and Ocean Color / Tristan Harmel
- 4.1. Introduction
- 4.2. Radiation components received by an observation satellite of the ocean color
- 4.3. Correction of atmospheric effects from satellite images
- 4.3.1. Cloud masking
- 4.3.2. Eliminating sun reflection from the sea (LG)
- 4.3.3. Estimation of the radiance linked to molecules (LRayleigh) and aerosols (Laerosol)
- 4.3.4. Estimation of Tatm and Tgas transmittances
- 4.3.5. Estimation of the water-leaving radiance Lw
- 4.4. Bio-optical properties of seawater
- 4.4.1. Optical properties of water molecules
- 4.4.2. Optical properties of phytoplankton
- 4.4.3. Optical properties of colored dissolved organic matter
- 4.4.4. Optical properties of the detrital organic matter
- 4.4.5. Optical properties of mineral matters
- 4.4.6. Additivity of optical properties
- 4.4.7. Definition of the radiometric values used in remote sensing
- 4.5. Determination principle of hydrosol concentrations by satellite
- 4.5.1. Spectral variation of the reflectance according to chlorophyll a
- 4.5.2. Estimation of the concentration in Chl-a
- 4.6. Examples of ocean color satellite sensors
- 4.7. Some applications of ocean color remote sensing
- 4.7.1. Detection of phytoplanktonic proliferations
- 4.7.2. Estimation of the phytoplankton functional types by satellite
- 4.7.3. Estimation of oceanic primary production
- 4.8. Prospects
- 4.9. Key points
- 4.10. List of acronyms
- 4.11. Bibliography
- ch. 5 LiDAR Measurements and Applications in Coastal and Continental Waters / Nicolas Baghdadi
- 5.1. Introduction: history and typology of LiDARs applied to aquatic environments
- 5.2. Equations and parameters of LiDAR systems applied to aquatic environments
- 5.2.1. Water surface return
- 5.2.2. Water column return
- 5.2.3. Water Bottom return
- 5.3. LiDAR acquisitions systems
- 5.3.1. Airborne LiDAR Bathymeter (ALB) systems
- 5.3.2. Oceanographic LiDAR systems
- 5.3.3. Spaceborne LiDAR systems in oceanography
- 5.4. Optical variables derived from LiDAR waveforms
- 5.4.1. Bathymetry
- 5.4.2. Water and bottom optical properties
- 5.5. Case studies of airborne LiDAR applications in hydrography and oceanography
- 5.5.1. Examples in coastal waters
- 5.5.2. Examples in coastal oceanography
- 5.5.3. Examples in continental waters
- 5.6. Prospectives of spaceborne LiDAR mapping of aquatic environments
- 5.7. Key points
- 5.8. Bibliography
- ch. 6 Contributions of Airborne Topographic LiDAR to the Study of Coastal Systems / Emilie Poullain
- 6.1. Introduction
- 6.2. Characterization of coastal evolution
- 6.2.1. Identification of coastlines for the study of kinematics on open coasts
- 6.2.2. Potential of airborne LiDAR for morphodynamic monitoring and the calculation of sedimentary budgets
- 6.3. Method of identifying the main channels in Mont Saint Michel bay combining topography and LiDAR intensity
- 6.3.1. Hypotheses selected for the extraction of channels
- 6.3.2. Description of data
- 6.3.3. Description of the processing workflow of the channel extraction
- 6.3.4. Results and discussion
- 6.4. Backscattered signal intensity applications
- 6.4.1. Modeling of the backscattered intensity as a function of the incidence angle
- 6.4.2. Characterization of scanned surfaces
- 6.4.3. Anisotropic surface detection by texture analysis
- 6.5. Quantification of the sandy surface moisture of Ls
- 6.6. Prospects
- 6.7. Key points
- 6.8. Bibliography
- ch. 7 Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing / Jean-Philippe Gastellu-Etchegorry
- 7.1. Introduction
- 7.2. Dynamics of mangrove forests
- 7.2.1. General context
- 7.2.2. The case of Guianese mangrove forests
- 7.2.3. Modeling forest dynamics in mangrove forests
- 7.2.4. Research concerns in VHR optical remote sensing of mangrove forests
- 7.3. Methods
- 7.3.1. Field experiments
- 7.3.2. Modeling 3D radiative transfer with DART
- 7.4. Application to the monitoring of Guianese mangrove forest dynamics
- 7.4.1. Principles, potential and limits of the FOTO method
- 7.4.2. Potential and limits of simulated images
- 7.5. Conclusion and prospects
- 7.6. Key points
- 7.7. Bibliography
- ch. 8 Remote Sensing-based Monitoring of the Muddy Mangrove Coastline of French Guiana / Edward J. Anthony
- 8.1. Introduction
- 8.1.1. The state of mangrove coastlines: information derived from remote sensing
- 8.1.2. The Guianas' mangrove coastline: a challenge for coastal applications of remote sensing
- 8.1.3. Chapter outline
- 8.2. Monitoring coastal water color with remote sensing
- 8.2.1. The concentration of phytoplankton and the biogeochemical composition of coastal waters
- 8.2.2. Water color as an indicator of sediment dynamics
- 8.2.3. Estimating the concentration of SPM using remote sensing
- 8.2.4. Satellites used to study water color
- 8.3. Remote sensing of coastal mud banks
- 8.3.1. Problem of delineation of mud banks linked to tides
- 8.3.2. Monitoring the migration of mud banks
- 8.3.3. Radar remote sensing of mud banks
- 8.4. Monitoring the shoreline with remote sensing
- 8.4.1. The shoreline: definition and issues posed by a multi-faceted feature
- 8.4.2. Exceptional dynamics of the Guianas' coastline
- 8.5. Intertidal topography
- 8.5.1. Ground surveys using a laser tacheometer or differential GPS
- 8.5.2. Interpolation of water level isolines on satellite images
- 8.5.3. Airborne LiDAR
- 8.5.4. Photogrammetry
- 8.6. Conclusion
- 8.7. Key points
- 8.8. Bibliography.