|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
SCIDIR_ocn959150499 |
003 |
OCoLC |
005 |
20231120112138.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160924s2016 enk ob 001 0 eng d |
010 |
|
|
|a 2017385566
|
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d N$T
|d IDEBK
|d OPELS
|d OCLCQ
|d N$T
|d OCLCF
|d VGM
|d OCLCQ
|d U3W
|d MERUC
|d EZ9
|d WYU
|d OCLCQ
|d OCLCO
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 959040757
|a 959274334
|a 960833779
|a 1066447436
|a 1235833385
|
020 |
|
|
|a 9780081017678
|q (electronic bk.)
|
020 |
|
|
|a 0081017677
|q (electronic bk.)
|
020 |
|
|
|z 9781785481604
|
020 |
|
|
|z 1785481606
|
035 |
|
|
|a (OCoLC)959150499
|z (OCoLC)959040757
|z (OCoLC)959274334
|z (OCoLC)960833779
|z (OCoLC)1066447436
|z (OCoLC)1235833385
|
050 |
|
4 |
|a GB451.2
|
072 |
|
7 |
|a SCI
|x 030000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 031000
|2 bisacsh
|
082 |
0 |
4 |
|a 551.45/70285
|2 23
|
100 |
1 |
|
|a Baghdadi, Nicolas,
|e author.
|
245 |
1 |
0 |
|a Land surface remote sensing in urban and coastal areas /
|c Nicolas Baghdadi, Mehrez Zribi.
|
260 |
|
|
|a London :
|b ISTE,
|c 2016.
|
300 |
|
|
|a 1 online resource (394 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Remote sensing observations of continental surfaces set
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed October 28, 2016).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Ch. 1
|t Optical Remote Sensing in Urban Environments /
|r Christiane Weber --
|g 1.1.
|t Introduction --
|g 1.1.1.
|t The urban system --
|g 1.1.2.
|t The urban environment --
|g 1.1.3.
|t The main characteristics of the urban environment: geometric, spectral and temporal --
|g 1.1.4.
|t Optical properties of urban materials --
|g 1.1.5.
|t Spectral characteristics --
|g 1.2.
|t Main applications of optical remote sensing in urban environments --
|g 1.2.1.
|t The use of very high spatial resolution multispectral imaging (VHR) for urban mapping and planning --
|g 1.2.2.
|t Biodiversity (blue belt and green belt) and vegetation detection in cities --
|g 1.2.3.
|t Urban heat islands --
|g 1.3.
|t Conclusions and prospects --
|g 1.4.
|t Key points --
|g 1.5.
|t Bibliography --
|g ch. 2
|t Urban Scene Analysis with Mobile Mapping Technology /
|r Clement Mallet --
|g 2.1.
|t Introduction --
|g 2.2.
|t Data acquisition --
|g 2.2.1.
|t Sensors onboard a mobile mapping system --
|g 2.2.2.
|t Integrating sensors --
|g 2.2.3.
|t Geometric calibration --
|g 2.2.4.
|t Specificities of MMT data --
|g 2.3.
|t Data registration and georeferencing --
|g 2.3.1.
|t Characteristics of the registration procedure --
|g 2.3.2.
|t Deformation models --
|g 2.3.3.
|t Pairing methods --
|g 2.3.4.
|t Pose estimation --
|g 2.4.
|t Analyzing urban scenes --
|g 2.4.1.
|t Local descriptors --
|g 2.4.2.
|t Segmentation and classification of 3D point clouds --
|g 2.4.3.
|t Object recognition --
|g 2.4.4.
|t Reconstruction --
|g 2.4.5.
|t Texturing --
|g 2.4.6.
|t 3D change detection --
|g 2.5.
|t Prospects --
|g 2.5.1.
|t Uncertainty Management --
|g 2.5.2.
|t Image/laser fusion --
|g 2.5.3.
|t Semantization as segmentation/classification coupling --
|g 2.5.4.
|t Surface reconstruction and semantization coupling --
|g 2.5.5.
|t Fusion of aerial and terrestrial data --
|g 2.6.
|t Key points --
|g 2.7.
|t Bibliography --
|g ch. 3
|t Satellite Imagery: a Tool for Territorial Development /
|r Pierre Maurel --
|g 3.1.
|t Introduction --
|g 3.2.
|t Sustainable territorial development, decision-making and information --
|g 3.2.1.
|t Regional policies --
|g 3.2.2.
|t Territorial development process --
|g 3.2.3.
|t Territorial socio-technical dispositive/apparatus of information and communication --
|g 3.2.4.
|t Functions supporting the territorial decision process --
|g 3.3.
|t Spatial representations derived from remote sensing --
|g 3.4.
|t STICA based on spatial representations at the service of integrated land management --
|g 3.4.1.
|t Thau territory and the challenge of urban sprawl --
|g 3.4.2.
|t Use of spatial information for land management in Madagascar --
|g 3.5.
|t Conclusions --
|g 3.6.
|t Key points --
|g 3.7.
|t Bibliography --
|g ch. 4
|t Remote Sensing and Ocean Color /
|r Tristan Harmel --
|g 4.1.
|t Introduction --
|g 4.2.
|t Radiation components received by an observation satellite of the ocean color --
|g 4.3.
|t Correction of atmospheric effects from satellite images --
|g 4.3.1.
|t Cloud masking --
|g 4.3.2.
|t Eliminating sun reflection from the sea (LG) --
|g 4.3.3.
|t Estimation of the radiance linked to molecules (LRayleigh) and aerosols (Laerosol) --
|g 4.3.4.
|t Estimation of Tatm and Tgas transmittances --
|g 4.3.5.
|t Estimation of the water-leaving radiance Lw --
|g 4.4.
|t Bio-optical properties of seawater --
|g 4.4.1.
|t Optical properties of water molecules --
|g 4.4.2.
|t Optical properties of phytoplankton --
|g 4.4.3.
|t Optical properties of colored dissolved organic matter --
|g 4.4.4.
|t Optical properties of the detrital organic matter --
|g 4.4.5.
|t Optical properties of mineral matters --
|g 4.4.6.
|t Additivity of optical properties --
|g 4.4.7.
|t Definition of the radiometric values used in remote sensing --
|g 4.5.
|t Determination principle of hydrosol concentrations by satellite --
|g 4.5.1.
|t Spectral variation of the reflectance according to chlorophyll a --
|g 4.5.2.
|t Estimation of the concentration in Chl-a --
|g 4.6.
|t Examples of ocean color satellite sensors --
|g 4.7.
|t Some applications of ocean color remote sensing --
|g 4.7.1.
|t Detection of phytoplanktonic proliferations --
|g 4.7.2.
|t Estimation of the phytoplankton functional types by satellite --
|g 4.7.3.
|t Estimation of oceanic primary production --
|g 4.8.
|t Prospects --
|g 4.9.
|t Key points --
|g 4.10.
|t List of acronyms --
|g 4.11.
|t Bibliography --
|g ch. 5
|t LiDAR Measurements and Applications in Coastal and Continental Waters /
|r Nicolas Baghdadi --
|g 5.1.
|t Introduction: history and typology of LiDARs applied to aquatic environments --
|g 5.2.
|t Equations and parameters of LiDAR systems applied to aquatic environments --
|g 5.2.1.
|t Water surface return --
|g 5.2.2.
|t Water column return --
|g 5.2.3.
|t Water Bottom return --
|g 5.3.
|t LiDAR acquisitions systems --
|g 5.3.1.
|t Airborne LiDAR Bathymeter (ALB) systems --
|g 5.3.2.
|t Oceanographic LiDAR systems --
|g 5.3.3.
|t Spaceborne LiDAR systems in oceanography --
|g 5.4.
|t Optical variables derived from LiDAR waveforms --
|g 5.4.1.
|t Bathymetry --
|g 5.4.2.
|t Water and bottom optical properties --
|g 5.5.
|t Case studies of airborne LiDAR applications in hydrography and oceanography --
|g 5.5.1.
|t Examples in coastal waters --
|g 5.5.2.
|t Examples in coastal oceanography --
|g 5.5.3.
|t Examples in continental waters --
|g 5.6.
|t Prospectives of spaceborne LiDAR mapping of aquatic environments --
|g 5.7.
|t Key points --
|g 5.8.
|t Bibliography --
|g ch. 6
|t Contributions of Airborne Topographic LiDAR to the Study of Coastal Systems /
|r Emilie Poullain --
|g 6.1.
|t Introduction --
|g 6.2.
|t Characterization of coastal evolution --
|g 6.2.1.
|t Identification of coastlines for the study of kinematics on open coasts --
|g 6.2.2.
|t Potential of airborne LiDAR for morphodynamic monitoring and the calculation of sedimentary budgets --
|g 6.3.
|t Method of identifying the main channels in Mont Saint Michel bay combining topography and LiDAR intensity --
|g 6.3.1.
|t Hypotheses selected for the extraction of channels --
|g 6.3.2.
|t Description of data --
|g 6.3.3.
|t Description of the processing workflow of the channel extraction --
|g 6.3.4.
|t Results and discussion --
|g 6.4.
|t Backscattered signal intensity applications --
|g 6.4.1.
|t Modeling of the backscattered intensity as a function of the incidence angle --
|g 6.4.2.
|t Characterization of scanned surfaces --
|g 6.4.3.
|t Anisotropic surface detection by texture analysis --
|g 6.5.
|t Quantification of the sandy surface moisture of Ls --
|g 6.6.
|t Prospects --
|g 6.7.
|t Key points --
|g 6.8.
|t Bibliography --
|g ch. 7
|t Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing /
|r Jean-Philippe Gastellu-Etchegorry --
|g 7.1.
|t Introduction --
|g 7.2.
|t Dynamics of mangrove forests --
|g 7.2.1.
|t General context --
|g 7.2.2.
|t The case of Guianese mangrove forests --
|g 7.2.3.
|t Modeling forest dynamics in mangrove forests --
|g 7.2.4.
|t Research concerns in VHR optical remote sensing of mangrove forests --
|g 7.3.
|t Methods --
|g 7.3.1.
|t Field experiments --
|g 7.3.2.
|t Modeling 3D radiative transfer with DART --
|g 7.4.
|t Application to the monitoring of Guianese mangrove forest dynamics --
|g 7.4.1.
|t Principles, potential and limits of the FOTO method --
|g 7.4.2.
|t Potential and limits of simulated images --
|g 7.5.
|t Conclusion and prospects --
|g 7.6.
|t Key points --
|g 7.7.
|t Bibliography --
|g ch. 8
|t Remote Sensing-based Monitoring of the Muddy Mangrove Coastline of French Guiana /
|r Edward J. Anthony --
|g 8.1.
|t Introduction --
|g 8.1.1.
|t The state of mangrove coastlines: information derived from remote sensing --
|g 8.1.2.
|t The Guianas' mangrove coastline: a challenge for coastal applications of remote sensing --
|g 8.1.3.
|t Chapter outline --
|g 8.2.
|t Monitoring coastal water color with remote sensing --
|g 8.2.1.
|t The concentration of phytoplankton and the biogeochemical composition of coastal waters --
|g 8.2.2.
|t Water color as an indicator of sediment dynamics --
|g 8.2.3.
|t Estimating the concentration of SPM using remote sensing --
|g 8.2.4.
|t Satellites used to study water color --
|g 8.3.
|t Remote sensing of coastal mud banks --
|g 8.3.1.
|t Problem of delineation of mud banks linked to tides --
|g 8.3.2.
|t Monitoring the migration of mud banks --
|g 8.3.3.
|t Radar remote sensing of mud banks --
|g 8.4.
|t Monitoring the shoreline with remote sensing --
|g 8.4.1.
|t The shoreline: definition and issues posed by a multi-faceted feature --
|g 8.4.2.
|t Exceptional dynamics of the Guianas' coastline --
|g 8.5.
|t Intertidal topography --
|g 8.5.1.
|t Ground surveys using a laser tacheometer or differential GPS --
|g 8.5.2.
|t Interpolation of water level isolines on satellite images --
|g 8.5.3.
|t Airborne LiDAR --
|g 8.5.4.
|t Photogrammetry --
|g 8.6.
|t Conclusion --
|g 8.7.
|t Key points --
|g 8.8.
|t Bibliography.
|
650 |
|
0 |
|a Coasts
|x Remote sensing.
|
650 |
|
0 |
|a Cities and towns
|x Remote sensing.
|
650 |
|
6 |
|a Littoral
|0 (CaQQLa)201-0004351
|x T�el�ed�etection.
|0 (CaQQLa)201-0380277
|
650 |
|
6 |
|a Villes
|0 (CaQQLa)201-0001590
|x T�el�ed�etection.
|0 (CaQQLa)201-0380277
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geography.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geology.
|2 bisacsh
|
650 |
|
7 |
|a Cities and towns
|x Remote sensing
|2 fast
|0 (OCoLC)fst00861836
|
650 |
|
7 |
|a Coasts
|x Remote sensing
|2 fast
|0 (OCoLC)fst00865820
|
700 |
1 |
|
|a Zribi, Mehrez,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Baghdadi, Nicolas.
|t Land surface remote sensing in urban and coastal areas.
|d London, England ; Oxford, England : ISTE Press : Elsevier, �2016
|h xlii, 350 pages
|k Remote sensing observations of continental surfaces set.
|z 9781785481604
|
830 |
|
0 |
|a Remote sensing observations of continental surfaces set.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781785481604
|z Texto completo
|