|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn958781332 |
003 |
OCoLC |
005 |
20231120112134.0 |
006 |
m o d |
007 |
cr unu---uuuuu |
008 |
160917s2016 enka ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OCLCO
|d EBLCP
|d OPELS
|d IDEBK
|d TEFOD
|d OCLCF
|d OCLCQ
|d IDB
|d DEBSZ
|d N$T
|d OCLCQ
|d U3W
|d MERUC
|d D6H
|d OCLCQ
|d TKN
|d LQU
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB6B0695
|2 bnb
|
016 |
7 |
|
|a 017969426
|2 Uk
|
019 |
|
|
|a 958385800
|a 958862794
|a 959272780
|a 959607242
|a 960494076
|a 962325695
|a 962786549
|a 1105172454
|a 1105565937
|a 1151717812
|
020 |
|
|
|a 9780128044704
|q (electronic bk.)
|
020 |
|
|
|a 0128044705
|q (electronic bk.)
|
020 |
|
|
|z 9780128044087
|
035 |
|
|
|a (OCoLC)958781332
|z (OCoLC)958385800
|z (OCoLC)958862794
|z (OCoLC)959272780
|z (OCoLC)959607242
|z (OCoLC)960494076
|z (OCoLC)962325695
|z (OCoLC)962786549
|z (OCoLC)1105172454
|z (OCoLC)1105565937
|z (OCoLC)1151717812
|
050 |
|
4 |
|a QA614.86
|b .M32 2016
|
072 |
|
7 |
|a MAT
|x 038000
|2 bisacsh
|
082 |
0 |
4 |
|a 514/.742
|2 23
|
100 |
1 |
|
|a Massopust, Peter Robert,
|d 1958-
|
245 |
1 |
0 |
|a Fractal functions, fractal surfaces, and wavelets /
|c Peter R. Massopust.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a London, United Kingdom ;
|a San Diego, CA, United States :
|b Academic Press is an imprint of Elsevier,
|c [2016]
|
300 |
|
|
|a 1 online resource (428 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Fractal Functions, Fractal Surfaces, and Wavelets; Copyright; Dedication; Contents; About the author; Preface to first edition; Preface to second edition; List of symbols; Part I: Foundations; Chapter 1: Mathematical preliminaries; 1 Analysis and topology; 2 Measures and probability theory; 3 Algebra; 3.1 Free groups, semigroups, and groups; 3.2 Reflection groups and root systems; 3.3 Affine Weyl groups and foldable figures; 4 Function spaces; 4.1 Lebesgue spaces; 4.2 H�older spaces; 4.3 Sobolev spaces; 4.4 Besov and Triebel-Lizorkin spaces; Chapter 2: Construction of fractal sets.
|
505 |
8 |
|
|a 1 Classical fractal sets1.1 Hausdorff measures and Hausdorff dimension; 1.2 Weierstra�-like fractal functions; 2 Iterated function systems; 2.1 Definition and properties of iterated function systems; 2.2 Moment theory and iterated function systems; 2.3 Recurrent iterated function systems; 2.4 Iterated Riemann surfaces; 3 Local iterated function systems; 4 Recurrent sets; 4.1 The construction of recurrent sets; 4.2 Subshifts of finite type and the connection to recurrent iterated function systems; 5 Graph-directed fractal constructions; 6 Transformations between fractal sets.
|
505 |
8 |
|
|a Chapter 3: Dimension theory1 Topological dimensions; 2 Metric dimensions; 3 Probabilistic dimensions; 4 Dimension results for self-affine fractal sets; 4.1 Dimension of self-similar fractals; 4.2 Dimension of self-affine fractals; 4.3 Recurrent iterated function systems and dimension; 4.4 Recurrent sets and Mauldin-Williams fractals; 5 The box dimension of projections; Chapter 4: Dynamical systems and dimension; 1 Ergodic theorems and entropy; 2 Lyapunov dimension; Part II: Fractal Functions and Fractal Surfaces; Chapter 5: Construction of fractal functions; 1 The Read-Bajraktarevi�c operator.
|
505 |
8 |
|
|a 2 Local fractal functions3 Fractal bases for fractal functions; 4 Recurrent sets as fractal functions; 5 Iterative interpolation functions; 6 Recurrent fractal functions; 7 Hidden-variable fractal functions; 8 Properties of fractal functions; 8.1 Moment theory of fractal functions; 8.2 Integral transforms of fractal functions; 8.3 Lipschitz continuity of fractal functions; 8.4 Extrema of fractal functions; 9 Peano curves; 10 Fractal functions of class Ck; 10.1 Indefinite integrals of continuous fractal functions; 11 Biaffine fractal functions; 12 Local fractal functions and smoothness spaces.
|
505 |
8 |
|
|a 12.1 Lebesgue spaces Lp, 0 <p 12.2 Smoothness spaces Cn and H�older spaces Cs; 12.2.1 Binary partition of X; 12.2.2 Vanishing endpoint conditions for Si; 12.3 Sobolev spaces Wm, p; 12.4 Besov and Triebel-Lizorkin spaces; 12.4.1 Besov spaces; 12.4.2 Triebel-Lizorkin spaces; Chapter 6: Fractels and self-referential functions; 1 Fractels: definition and properties; 2 A fractel Read-Bajraktarevi�c operator; 3 Further properties of fractels; 3.1 Algebra; 3.2 Cartesian products and function composition; 3.3 Analysis; Chapter 7: Dimension of fractal functions; 1 Affine fractal functions 2 Recurrent fractal functions.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on September 19, 2016).
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Fractals.
|
650 |
|
6 |
|a Fractales.
|0 (CaQQLa)201-0134451
|
650 |
|
7 |
|a fractals.
|2 aat
|0 (CStmoGRI)aat300073497
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a Fractals
|2 fast
|0 (OCoLC)fst00933507
|
776 |
0 |
8 |
|i Print version:
|a Massopust, Peter R.
|t Fractal Functions, Fractal Surfaces, and Wavelets.
|d San Diego : Elsevier Science, �2016
|z 9780128044087
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128044087
|z Texto completo
|