Cargando…

Fractal functions, fractal surfaces, and wavelets /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Massopust, Peter Robert, 1958-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, CA, United States : Academic Press is an imprint of Elsevier, [2016]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn958781332
003 OCoLC
005 20231120112134.0
006 m o d
007 cr unu---uuuuu
008 160917s2016 enka ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCO  |d EBLCP  |d OPELS  |d IDEBK  |d TEFOD  |d OCLCF  |d OCLCQ  |d IDB  |d DEBSZ  |d N$T  |d OCLCQ  |d U3W  |d MERUC  |d D6H  |d OCLCQ  |d TKN  |d LQU  |d UKMGB  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB6B0695  |2 bnb 
016 7 |a 017969426  |2 Uk 
019 |a 958385800  |a 958862794  |a 959272780  |a 959607242  |a 960494076  |a 962325695  |a 962786549  |a 1105172454  |a 1105565937  |a 1151717812 
020 |a 9780128044704  |q (electronic bk.) 
020 |a 0128044705  |q (electronic bk.) 
020 |z 9780128044087 
035 |a (OCoLC)958781332  |z (OCoLC)958385800  |z (OCoLC)958862794  |z (OCoLC)959272780  |z (OCoLC)959607242  |z (OCoLC)960494076  |z (OCoLC)962325695  |z (OCoLC)962786549  |z (OCoLC)1105172454  |z (OCoLC)1105565937  |z (OCoLC)1151717812 
050 4 |a QA614.86  |b .M32 2016 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514/.742  |2 23 
100 1 |a Massopust, Peter Robert,  |d 1958- 
245 1 0 |a Fractal functions, fractal surfaces, and wavelets /  |c Peter R. Massopust. 
250 |a Second edition. 
264 1 |a London, United Kingdom ;  |a San Diego, CA, United States :  |b Academic Press is an imprint of Elsevier,  |c [2016] 
300 |a 1 online resource (428 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Front Cover; Fractal Functions, Fractal Surfaces, and Wavelets; Copyright; Dedication; Contents; About the author; Preface to first edition; Preface to second edition; List of symbols; Part I: Foundations; Chapter 1: Mathematical preliminaries; 1 Analysis and topology; 2 Measures and probability theory; 3 Algebra; 3.1 Free groups, semigroups, and groups; 3.2 Reflection groups and root systems; 3.3 Affine Weyl groups and foldable figures; 4 Function spaces; 4.1 Lebesgue spaces; 4.2 H�older spaces; 4.3 Sobolev spaces; 4.4 Besov and Triebel-Lizorkin spaces; Chapter 2: Construction of fractal sets. 
505 8 |a 1 Classical fractal sets1.1 Hausdorff measures and Hausdorff dimension; 1.2 Weierstra�-like fractal functions; 2 Iterated function systems; 2.1 Definition and properties of iterated function systems; 2.2 Moment theory and iterated function systems; 2.3 Recurrent iterated function systems; 2.4 Iterated Riemann surfaces; 3 Local iterated function systems; 4 Recurrent sets; 4.1 The construction of recurrent sets; 4.2 Subshifts of finite type and the connection to recurrent iterated function systems; 5 Graph-directed fractal constructions; 6 Transformations between fractal sets. 
505 8 |a Chapter 3: Dimension theory1 Topological dimensions; 2 Metric dimensions; 3 Probabilistic dimensions; 4 Dimension results for self-affine fractal sets; 4.1 Dimension of self-similar fractals; 4.2 Dimension of self-affine fractals; 4.3 Recurrent iterated function systems and dimension; 4.4 Recurrent sets and Mauldin-Williams fractals; 5 The box dimension of projections; Chapter 4: Dynamical systems and dimension; 1 Ergodic theorems and entropy; 2 Lyapunov dimension; Part II: Fractal Functions and Fractal Surfaces; Chapter 5: Construction of fractal functions; 1 The Read-Bajraktarevi�c operator. 
505 8 |a 2 Local fractal functions3 Fractal bases for fractal functions; 4 Recurrent sets as fractal functions; 5 Iterative interpolation functions; 6 Recurrent fractal functions; 7 Hidden-variable fractal functions; 8 Properties of fractal functions; 8.1 Moment theory of fractal functions; 8.2 Integral transforms of fractal functions; 8.3 Lipschitz continuity of fractal functions; 8.4 Extrema of fractal functions; 9 Peano curves; 10 Fractal functions of class Ck; 10.1 Indefinite integrals of continuous fractal functions; 11 Biaffine fractal functions; 12 Local fractal functions and smoothness spaces. 
505 8 |a 12.1 Lebesgue spaces Lp, 0 <p 12.2 Smoothness spaces Cn and H&#xFFFD;older spaces Cs; 12.2.1 Binary partition of X; 12.2.2 Vanishing endpoint conditions for Si; 12.3 Sobolev spaces Wm, p; 12.4 Besov and Triebel-Lizorkin spaces; 12.4.1 Besov spaces; 12.4.2 Triebel-Lizorkin spaces; Chapter 6: Fractels and self-referential functions; 1 Fractels: definition and properties; 2 A fractel Read-Bajraktarevi&#xFFFD;c operator; 3 Further properties of fractels; 3.1 Algebra; 3.2 Cartesian products and function composition; 3.3 Analysis; Chapter 7: Dimension of fractal functions; 1 Affine fractal functions 2 Recurrent fractal functions. 
588 0 |a Online resource; title from digital title page (viewed on September 19, 2016). 
504 |a Includes bibliographical references and index. 
650 0 |a Fractals. 
650 6 |a Fractales.  |0 (CaQQLa)201-0134451 
650 7 |a fractals.  |2 aat  |0 (CStmoGRI)aat300073497 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Fractals  |2 fast  |0 (OCoLC)fst00933507 
776 0 8 |i Print version:  |a Massopust, Peter R.  |t Fractal Functions, Fractal Surfaces, and Wavelets.  |d San Diego : Elsevier Science, &#xFFFD;2016  |z 9780128044087 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128044087  |z Texto completo