|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_ocn958455389 |
003 |
OCoLC |
005 |
20231120112135.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160916s2016 enk ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d YDX
|d EBLCP
|d OPELS
|d OCLCQ
|d OCLCF
|d COO
|d IDEBK
|d VT2
|d OCLCO
|d OCLCA
|d MERER
|d OCLCO
|d IDB
|d N$T
|d QCL
|d DGU
|d OCLCO
|d OCLCQ
|d OCLCA
|d U3W
|d D6H
|d OCLCQ
|d OCLCO
|d AU@
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCA
|d OCLCQ
|d LQU
|d S2H
|d OCLCO
|d LVT
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 958414254
|a 1105190342
|a 1229534048
|
020 |
|
|
|a 0128026413
|q (electronic bk.)
|
020 |
|
|
|a 9780128026410
|q (electronic bk.)
|
020 |
|
|
|z 0128024526
|
020 |
|
|
|z 9780128024522
|
035 |
|
|
|a (OCoLC)958455389
|z (OCoLC)958414254
|z (OCoLC)1105190342
|z (OCoLC)1229534048
|
050 |
|
4 |
|a RC346
|
060 |
|
4 |
|a WL 102
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.8
|
100 |
1 |
|
|a El Hady, Ahmed.
|
245 |
1 |
0 |
|a Closed loop neuroscience /
|c Ahmed El Hady.
|
260 |
|
|
|a London, United Kingdom :
|b Academic Press,
|c �2016.
|
300 |
|
|
|a 1 online resource (304)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Closed Loop Neuroscience; Copyright; Dedication; Contents; List of Contributors; Foreword and Introduction; Acknowledgments; Part I: Theoretical Axis; Chapter 1: Adaptive Bayesian Methods for Closed-Loop Neurophysiology; 1. Introduction; 2. Bayesian Active Learning; 2.1. Posterior and Predictive Distributions; 2.2. Utility Functions and Optimal Stimulus Selection; 2.2.1. Maximum Mutual Information (Infomax); 2.2.2. Minimum Mean Squared Error (MMSE); 2.2.3. Other Utility Functions; 2.2.4. Uncertainty Sampling; 3. Application: Tuning Curve Estimation; 3.1. Poisson Encoding Model.
|
505 |
8 |
|
|a 3.2. Parametric Tuning Curves3.3. Nonparametric Tuning Curves With Gaussian Process Priors; 3.3.1. Gaussian Processes; 3.3.2. Transformed Gaussian Processes; 3.3.3. Posterior Updating; 3.3.4. Infomax Learning; 3.3.5. Simulations; 4. Application: Linear Receptive Field Estimation; 4.1. Generalized Linear Model; 4.2. Infomax Stimulus Selection for Poisson GLM; 4.3. Infomax for Hierarchical RF Models; 4.3.1. Posterior Distribution; 4.3.2. Localized RF Prior; 4.3.3. Active Learning With Localized Priors; 4.4. Comparison of Methods for RF Estimation; 4.4.1. Simulated Data.
|
505 |
8 |
|
|a 4.4.2. Application to Neural Data5. Discussion; 5.1. Adaptation; 5.2. Greediness; 5.3. Model Specification; 5.4. Future Directions; References; Chapter 2: Information Geometric Analysis of NeurophysiologicalData; 1. Introduction; 2. Introduction of the IGMethod; 3. IG Analysis of NeurophysiologicalData; 4. IG Measures and the Underlying Network Parameters; 5. Extension of the IGMethod; 5.1. IG Measures Under Correlated Inputs; 5.2. Correlated Inputs and Higher-Order Interactions; 5.3. Relationship Between Higher-Order IG Measures and Network Parameters.
|
505 |
8 |
|
|a 5.4. IG Measures and Oscillatory Brain States5.5. State-Space Analysis of Time-Varying IGMeasures; 5.6. Estimation of Spiking Irregularities forNonstationary FiringRate; 6. Information Geometry and Closed-Loop Neuroscience; 7. Conclusion; References; Chapter 3: Control Theory for Closed-Loop Neurophysiology; 1. Introduction; 2. Dynamics of Neural Physiology and Modeling Paradigms; 2.1. Fundamentals of Neural Function; 2.2. Dynamical Systems Models: Neuron-Level Models; 2.2.1. Voltage-Gated Conductance Equations; 2.3. Statistical Models; 2.4. Mean Field Models.
|
505 |
8 |
|
|a 3. From Neurostimulation to Neurocontrol3.1. Actuating the Brain: Technologies for Neurostimulation; 3.2. Actuating the Brain: Characterization of Control Inputs; 3.3. Probing Brain Circuits With Principled Objective Functions; 3.4. Control of Single Neurons; 3.5. Control of Neuronal Oscillator Networks: Synchronization; 3.6. Control of Neuronal Oscillator Networks: Desynchronization; 3.7. Control of Bursting and Seizure Activity; 4. Identification and Estimation of Neuronal Dynamics; 4.1. Inference of Neuronal Network Structure and Connectivity; 4.2. State Estimation and Kalman Filtering.
|
500 |
|
|
|a Includes index.
|
504 |
|
|
|a Includes bibliographical references at the end of each chapters.
|
650 |
|
0 |
|a Neurophysiology.
|
650 |
|
2 |
|a Nervous System Physiological Phenomena
|0 (DNLM)D009424
|
650 |
|
2 |
|a Neurophysiology
|0 (DNLM)D009482
|
650 |
|
6 |
|a Neurophysiologie.
|0 (CaQQLa)201-0000504
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Neurophysiology
|2 fast
|0 (OCoLC)fst01036464
|
776 |
0 |
8 |
|i Print version:
|a El Hady, Ahmed.
|t Closed loop neuroscience.
|d London, United Kingdom : Academic Press, �2016
|z 0128024526
|z 9780128024522
|w (OCoLC)938383110
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128024522
|z Texto completo
|