Cargando…

Structure and properties of nanoalloys /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ferrando, Riccardo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Elsevier, 2016.
Colección:Frontiers of nanoscience.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Structure and Properties of Nanoalloys; Copyright; Contents; Preface; Abbreviations; Chapter 1: Introduction; 1.1 Scalable and Nonscalable Regimes in Metal Clusters and Nanoparticles; 1.2 Bulk Alloys: Composition-dependent Properties; 1.3 Marrying Nano and Alloys: the Nanoalloys; Chapter 2: Geometric structures and chemical ordering in nanoalloys; 2.1 Geometric Structures; 2.1.1 Crystalline Structures; Face-centered cubic (fcc) nanoparticles; Body-centered cubic (bcc) nanoparticles; Hexagonal close-packed (hcp) nanoparticles; 2.1.2 Twinned Structures; 2.1.3 Decahedra.
  • 2.1.4 Mackay Icosahedra2.1.5 Other Structures: Anti-Mackay Icosahedra, Pentadodecahedra, Polyicosahedra, Leary Tetrahedra and Hybrid Structures; 2.1.6 Energetic Stability of the Different Motifs in Elemental Metallic Nanoparticles; 2.1.7 Supported Nanoparticles; 2.2 Chemical Ordering; 2.2.1 Mixing Patterns; 2.2.2 Nonmixing Patterns; 2.3 Order Parameters for Characterizing Nanoalloy Structure and Chemical Ordering; Chapter 3: Synthesis and characterization of nanoalloy structures; 3.1 Growth and Synthesis of Nanoalloys; 3.1.1 Formation in the Gas Phase; Seeded supersonic nozzle sources.
  • Gas-aggregation sourcesLaser vaporization sources; Pulsed arc cluster ion sources; Ion sputtering and magnetron sputtering sources; 3.1.2 Growth on a Solid Substrate; 3.1.3 Ion Implantation; 3.1.4 Mechanical Alloying Methods; 3.1.5 Wet Chemical Methods; Chemical reduction; Phase transfer synthesis; Thermal decomposition of transition-metal complexes; Electrochemical synthesis; Synthesis in inverse micelles; 3.1.6 Other Methods; Radiolysis; Sonochemical synthesis; Scanning probe block copolymer lithography; Atomic layer deposition; Biosynthesis; 3.2 Techniques for Structural Characterization.
  • 3.2.1 Electron MicroscopyTransmission electron microscopy; Scanning electron microscopy; 3.2.2 X-ray Techniques; X-ray scattering; X-ray absorption; X-ray photoelectron spectroscopy; 3.2.3 Optical Probes; Surface plasmon resonance; Raman spectroscopy; 3.2.4 Other Techniques; Low-energy ion scattering; Infrared spectroscopy; Nuclear magnetic resonance; Chapter 4: Theoretical and computational methods for nanoalloy structure and thermodynamics; 4.1 The Energy Landscape and the Global Optimization Problem; 4.1.1 Density Functional Theory; 4.1.2 Tight-Binding Model; 4.1.3 Atomistic Approaches.
  • 4.1.4 Exploring the Energy Landscape4.2 Global Optimization Algorithms for Nanoalloys; 4.2.1 Basin Hopping Algorithm; 4.2.2 Genetic Algorithms; 4.2.3 Elementary Moves in Global Optimization Searches; Shake move; Brownian move; Twist move; Angular, ball, and shell moves; Occasional jump move; Cut-and-splice crossover; Exchange move; 4.2.4 Optimizing Chemical Ordering in Nanoalloys; 4.2.5 Optimizing Geometry and Chemical Ordering Together; 4.3 Computational Methods for Nanoalloy Equilibrium Properties and Growth; 4.3.1 Molecular Dynamics; 4.3.2 Monte Carlo Simulations.