Cargando…

GPU programming in MATLAB /

GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ploskas, Nikolaos
Otros Autores: Samaras, Nikolaos
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016]
�2016
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn957614431
003 OCoLC
005 20231120112131.0
006 m o d
007 cr |n|||||||||
008 160901s2016 mau ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d IDEBK  |d N$T  |d OPELS  |d UMI  |d OCLCQ  |d TOH  |d UPM  |d STF  |d COO  |d DEBBG  |d OCLCQ  |d U3W  |d VT2  |d REB  |d D6H  |d OCLCF  |d CEF  |d KSU  |d OCLCQ  |d WYU  |d UAB  |d CNCEN  |d RDF  |d UKMGB  |d S2H  |d OCLCO  |d LVT  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB6B0701  |2 bnb 
016 7 |a 017969432  |2 Uk 
019 |a 957557861  |a 957680452  |a 957738337  |a 958459769  |a 959032103  |a 1017923012  |a 1066424764  |a 1103262113  |a 1229740746 
020 |a 9780128051337  |q (electronic bk.) 
020 |a 0128051337  |q (electronic bk.) 
020 |z 0128051329 
020 |z 9780128051320 
035 |a (OCoLC)957614431  |z (OCoLC)957557861  |z (OCoLC)957680452  |z (OCoLC)957738337  |z (OCoLC)958459769  |z (OCoLC)959032103  |z (OCoLC)1017923012  |z (OCoLC)1066424764  |z (OCoLC)1103262113  |z (OCoLC)1229740746 
050 4 |a T385 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.6/6 
100 1 |a Ploskas, Nikolaos. 
245 1 0 |a GPU programming in MATLAB /  |c Nikolaos Ploskas, Nikolaos Samaras. 
260 |a Cambridge, MA :  |b Morgan Kaufmann is an imprint of Elsevier,  |c [2016] 
264 4 |c �2016 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a GPU programming in MATLAB is intended for scientists, engineers, or students who develop or maintain applications in MATLAB and would like to accelerate their codes using GPU programming without losing the many benefits of MATLAB. The book starts with coverage of the Parallel Computing Toolbox and other MATLAB toolboxes for GPU computing, which allow applications to be ported straightforwardly onto GPUs without extensive knowledge of GPU programming. The next part covers built-in, GPU-enabled features of MATLAB, including options to leverage GPUs across multicore or different computer systems. Finally, advanced material includes CUDA code in MATLAB and optimizing existing GPU applications. Throughout the book, examples and source codes illustrate every concept so that readers can immediately apply them to their own development. Provides in-depth, comprehensive coverage of GPUs with MATLAB, including the parallel computing toolbox and built-in features for other MATLAB toolboxes Explains how to accelerate computationally heavy applications in MATLAB without the need to re-write them in another language Presents case studies illustrating key concepts across multiple fields Includes source code, sample datasets, and lecture slides. 
505 0 |a Front Cover; GPU Programming in MATLAB; Copyright; Dedication; Contents; About the Authors; Foreword; Preface; Chapter 1: Introduction; 1.1 Parallel programming; 1.1.1 Introduction to Parallel Computing; 1.1.2 Classification of Parallel Computers; 1.1.3 Parallel Computers' Memory Architectures; 1.2 GPU programming; 1.3 CUDA architecture; 1.4 Why GPU programming in MATLAB? when to use GPU programming?; 1.5 Our approach: Organization of the book; 1.6 Chapter Review; Chapter 2: Getting started; 2.1 Hardware Requirements; 2.2 Software requirements; 2.2.1 NVIDIA CUDA Toolkit; Windows; Linux 
505 8 |a MAC OS2.2.2 MATLAB; Windows; Linux; MAC OS; 2.3 Chapter review; Chapter 3: Parallel Computing Toolbox; 3.1 Product Description and Objectives; 3.2 Parallel for-loops (parfor); Example: Monte Carlo simulation to approximate the area of a figure; 3.3 Single program multiple data (spmd); Example: Monte Carlo simulation to approximate the area of a figure; 3.4 Distributed and codistributed arrays; 3.5 Interactive parallel development (pmode); 3.6 GPU Computing; 3.7 Clusters and Job Scheduling; 3.8 Chapter Review; Chapter 4: Introduction to GPU programming in MATLAB 
505 8 |a 4.1 GPU Programming Features in MATLAB4.2 GPU arrays; 4.3 Built-in MATLAB functions for GPUS; Example: Image edge detection; 4.4 Element-wise MATLAB code on GPUs; Example: Filter signal using fast convolution; 4.5 Chapter review; Chapter 5: GPU programming on MATLAB toolboxes; 5.1 Communications System Toolbox; Example: Convolutional coding; 5.2 Image Processing Toolbox; Example: Computed tomography image reconstruction; 5.3 Neural Network Toolbox; Example: Neural network training and simulation on chemical dataset; 5.4 Phased Array System Toolbox 
505 8 |a Example: Clutter simulation of a radar system5.5 Signal Processing Toolbox; Example: Filter signal using circular convolution; 5.6 Statistics and Machine Learning Toolbox; Example: Estimation of descriptive statistics measures using the Monte Carlo method; 5.7 Chapter Review; Chapter 6: Multiple GPUs; 6.1 Identify and run code on a specific GPU device; 6.2 Examples using multiple GPUs; Example 1: Monte Carlo simulation to approximate the area of a figure; Example 2: Estimation of descriptive statistics measures using the Monte Carlo method; Example 3: Image edge detection on multiple images 
505 8 |a 6.3 Chapter reviewChapter 7: Run CUDA or PTX code; 7.1 A brief introduction to CUDA C; 7.2 Steps to run CUDA or PTX code on a GPU through MATLAB; 7.3 Example: Vector addition; 7.4 Example: Matrix multiplication; 7.5 Chapter review; Chapter 8: MATLAB MEX functions containing CUDA code; 8.1 A brief introduction to MATLAB MEX files; 8.2 Steps to run MATLAB MEX functions on GPU; 8.3 Example: Vector addition; 8.4 Example: matrix multiplication; 8.5 Chapter review; Chapter 9: CUDA-accelerated libraries; 9.1 Introduction; 9.2 cuBLAS; 9.3 cuFFT; 9.4 cuRAND; 9.5 cuSOLVER; 9.6 cuSPARSE; 9.7 NPP 
630 0 0 |a MATLAB. 
650 0 |a Graphics processing units  |x Programming. 
650 0 |a Parallel processing (Electronic computers) 
650 6 |a Processeurs graphiques  |x Programmation.  |0 (CaQQLa)000277209 
650 6 |a Parall�elisme (Informatique)  |0 (CaQQLa)201-0057785 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
630 0 7 |a MATLAB  |2 fast  |0 (OCoLC)fst01365096 
650 7 |a Parallel processing (Electronic computers)  |2 fast  |0 (OCoLC)fst01052928 
700 1 |a Samaras, Nikolaos. 
776 0 8 |i Print version:  |a Ploskas, Nikolaos.  |t GPU programming in MATLAB.  |d Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, [2016]  |z 0128051329  |z 9780128051320  |w (OCoLC)949750234 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128051320  |z Texto completo