MARC

LEADER 00000cam a2200000Ia 4500
001 SCIDIR_ocn956998930
003 OCoLC
005 20231120112129.0
006 m o d
007 cr |n|||||||||
008 160819s2016 enk ob 001 0 eng d
010 |a  2016936211 
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d EBLCP  |d OPELS  |d N$T  |d IDEBK  |d OCLCF  |d YDX  |d QCL  |d OCLCQ  |d MERUC  |d OCLCO  |d MERER  |d OCLCQ  |d OCLCO  |d OCLCQ  |d U3W  |d D6H  |d CHVBK  |d WYU  |d OCLCO  |d OCLCA  |d AU@  |d OCLCQ  |d UKMGB  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB6B0693  |2 bnb 
016 7 |a 101696386  |2 DNLM 
016 7 |a 017969424  |2 Uk 
019 |a 956988809  |a 961312372  |a 1066524991  |a 1235830693 
020 |a 9780128041147  |q (electronic bk.) 
020 |a 0128041145  |q (electronic bk.) 
020 |z 9780128040768 
020 |z 0128040769 
035 |a (OCoLC)956998930  |z (OCoLC)956988809  |z (OCoLC)961312372  |z (OCoLC)1066524991  |z (OCoLC)1235830693 
050 4 |a RC78.7.D53 
060 0 0 |a 2016 I-614 
060 1 0 |a WN 26.5 
072 7 |a HEA  |x 039000  |2 bisacsh 
072 7 |a MED  |x 014000  |2 bisacsh 
072 7 |a MED  |x 022000  |2 bisacsh 
072 7 |a MED  |x 112000  |2 bisacsh 
072 7 |a MED  |x 045000  |2 bisacsh 
082 0 4 |a 616.07/54  |2 23 
100 1 |a Wu, Guorong  |c (Researcher in medical imaging) 
245 1 0 |a Machine learning and medical imaging /  |c Guorong Wu, Dinggang Shen, Mert R. Sabuncu. 
260 |a London, United Kingdom :  |b Academic Press is an imprint of Elsevier,  |c 2016. 
300 |a 1 online resource (514 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Elsevier and MICCAI society book series 
588 0 |a Print version record. 
505 0 |a Front Cover; Machine Learning and Medical Imaging; Copyright; Contents; Contributors; Editor Biographies; Preface; Acknowledgments; Part 1: Cutting-edge machine learning techniques in medical imaging; Chapter 1: Functional connectivity parcellation of the human brain; 1.1 Introduction; 1.2 Approaches to Connectivity-Based Brain Parcellation; 1.3 Mixture Model; 1.3.1 Model; 1.3.2 Inference; 1.4 Markov Random Field Model; 1.4.1 Model; 1.4.2 Inference; 1.5 Summary; References; Chapter 2: Kernel machine regression in neuroimaging genetics; 2.1 Introduction; 2.2 Mathematical Foundations. 
505 8 |a 2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space. 
505 8 |a Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs. 
505 8 |a Alternative unit types3.1.1.3 Stacked denoising autoencoders; 3.1.2 Learning From Labeled Input Images; 3.1.2.1 Dense neural networks; 3.1.2.2 Convolutional neural networks; 3.2 Overview of Deep Learning in Neuroimaging; 3.2.1 Deformable Image Registration Using Deep-Learned Features; 3.2.2 Segmentation of Neuroimaging Data Using Deep Learning; 3.2.2.1 Hippocampus segmentation; 3.2.2.2 Infant brain image segmentation; 3.2.2.3 Brain tumor segmentation; 3.2.3 Classification of Neuroimaging Data Using Deep Learning; 3.2.3.1 Schizophrenia diagnosis; 3.2.3.2 Huntington disease diagnosis. 
505 8 |a 3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection. 
504 |a Includes bibliographical references and index. 
650 0 |a Diagnostic imaging  |x Digital techniques. 
650 0 |a Artificial intelligence  |x Medical applications. 
650 1 2 |a Image Processing, Computer-Assisted  |0 (DNLM)D007091 
650 2 2 |a Machine Learning  |0 (DNLM)D000069550 
650 6 |a Imagerie pour le diagnostic  |x Techniques num�eriques.  |0 (CaQQLa)201-0395388 
650 6 |a Intelligence artificielle en m�edecine.  |0 (CaQQLa)201-0180593 
650 7 |a HEALTH & FITNESS  |x Diseases  |x General.  |2 bisacsh 
650 7 |a MEDICAL  |x Clinical Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Diseases.  |2 bisacsh 
650 7 |a MEDICAL  |x Evidence-Based Medicine.  |2 bisacsh 
650 7 |a MEDICAL  |x Internal Medicine.  |2 bisacsh 
650 7 |a Artificial intelligence  |x Medical applications  |2 fast  |0 (OCoLC)fst00817267 
650 7 |a Diagnostic imaging  |x Digital techniques  |2 fast  |0 (OCoLC)fst00892359 
700 1 |a Shen, Dinggang. 
700 1 |a Sabuncu, Mert Rory,  |d 1979- 
776 0 8 |i Print version :  |z 9780128040768 
830 0 |a Elsevier and MICCAI Society book series. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128040768  |z Texto completo