|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
SCIDIR_ocn956998930 |
003 |
OCoLC |
005 |
20231120112129.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160819s2016 enk ob 001 0 eng d |
010 |
|
|
|a 2016936211
|
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d OCLCQ
|d EBLCP
|d OPELS
|d N$T
|d IDEBK
|d OCLCF
|d YDX
|d QCL
|d OCLCQ
|d MERUC
|d OCLCO
|d MERER
|d OCLCQ
|d OCLCO
|d OCLCQ
|d U3W
|d D6H
|d CHVBK
|d WYU
|d OCLCO
|d OCLCA
|d AU@
|d OCLCQ
|d UKMGB
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB6B0693
|2 bnb
|
016 |
7 |
|
|a 101696386
|2 DNLM
|
016 |
7 |
|
|a 017969424
|2 Uk
|
019 |
|
|
|a 956988809
|a 961312372
|a 1066524991
|a 1235830693
|
020 |
|
|
|a 9780128041147
|q (electronic bk.)
|
020 |
|
|
|a 0128041145
|q (electronic bk.)
|
020 |
|
|
|z 9780128040768
|
020 |
|
|
|z 0128040769
|
035 |
|
|
|a (OCoLC)956998930
|z (OCoLC)956988809
|z (OCoLC)961312372
|z (OCoLC)1066524991
|z (OCoLC)1235830693
|
050 |
|
4 |
|a RC78.7.D53
|
060 |
0 |
0 |
|a 2016 I-614
|
060 |
1 |
0 |
|a WN 26.5
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.07/54
|2 23
|
100 |
1 |
|
|a Wu, Guorong
|c (Researcher in medical imaging)
|
245 |
1 |
0 |
|a Machine learning and medical imaging /
|c Guorong Wu, Dinggang Shen, Mert R. Sabuncu.
|
260 |
|
|
|a London, United Kingdom :
|b Academic Press is an imprint of Elsevier,
|c 2016.
|
300 |
|
|
|a 1 online resource (514 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a The Elsevier and MICCAI society book series
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Machine Learning and Medical Imaging; Copyright; Contents; Contributors; Editor Biographies; Preface; Acknowledgments; Part 1: Cutting-edge machine learning techniques in medical imaging; Chapter 1: Functional connectivity parcellation of the human brain; 1.1 Introduction; 1.2 Approaches to Connectivity-Based Brain Parcellation; 1.3 Mixture Model; 1.3.1 Model; 1.3.2 Inference; 1.4 Markov Random Field Model; 1.4.1 Model; 1.4.2 Inference; 1.5 Summary; References; Chapter 2: Kernel machine regression in neuroimaging genetics; 2.1 Introduction; 2.2 Mathematical Foundations.
|
505 |
8 |
|
|a 2.2.1 From Regression Analysis to Kernel Methods2.2.2 Kernel Machine Regression; 2.2.3 Linear Mixed Effects Models; 2.2.4 Statistical Inference; 2.2.5 Constructing and Selecting Kernels; 2.2.6 Theoretical Extensions; 2.2.6.1 Generalized kernel machine regression; 2.2.6.2 Multiple kernel functions; 2.2.6.3 Correlated phenotypes; 2.2.6.4 Multidimensional traits; 2.3 Applications; 2.3.1 Genetic Association Studies; 2.3.2 Imaging Genetics; 2.4 Conclusion and Future Directions; Acknowledgments; Appendix A: Reproducing Kernel Hilbert Spaces; Appendix A.1: Inner Product and Hilbert Space.
|
505 |
8 |
|
|a Appendix A.2: Kernel Function and Kernel MatrixAppendix A.3: Reproducing Kernel Hilbert Space; Appendix A.4: Mercer's Theorem; Appendix A.5: Representer Theorem; Appendix B: Restricted Maximum Likelihood Estimation; References; Chapter 3: Deep learning of brain images and its application to multiple sclerosis; 3.1 Introduction; 3.1.1 Learning From Unlabeled Input Images; 3.1.1.1 From restricted Boltzmann machines to deep belief networks; Inference; Training; Deep belief networks; 3.1.1.2 Variants of restricted Boltzmann machines and deep belief networks; Convolutional DBNs.
|
505 |
8 |
|
|a Alternative unit types3.1.1.3 Stacked denoising autoencoders; 3.1.2 Learning From Labeled Input Images; 3.1.2.1 Dense neural networks; 3.1.2.2 Convolutional neural networks; 3.2 Overview of Deep Learning in Neuroimaging; 3.2.1 Deformable Image Registration Using Deep-Learned Features; 3.2.2 Segmentation of Neuroimaging Data Using Deep Learning; 3.2.2.1 Hippocampus segmentation; 3.2.2.2 Infant brain image segmentation; 3.2.2.3 Brain tumor segmentation; 3.2.3 Classification of Neuroimaging Data Using Deep Learning; 3.2.3.1 Schizophrenia diagnosis; 3.2.3.2 Huntington disease diagnosis.
|
505 |
8 |
|
|a 3.2.3.3 Task identification using functional MRI dataset3.2.3.4 Early diagnosis of Alzheimer's disease; 3.2.3.5 High-level 3D PET image feature learning; 3.3 Focus on Deep Learning in Multiple Sclerosis; 3.3.1 Multiple Sclerosis and the Role of Imaging; 3.3.2 White Matter Lesion Segmentation; 3.3.2.1 Patch-based segmentation methods; 3.3.2.2 Convolutional encoder network segmentation; 3.3.3 Modeling Disease Variability; 3.4 Future Research Needs; Acknowledgments; References; Chapter 4: Machine learning and its application in microscopic image analysis; 4.1 Introduction; 4.2 Detection.
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Diagnostic imaging
|x Digital techniques.
|
650 |
|
0 |
|a Artificial intelligence
|x Medical applications.
|
650 |
1 |
2 |
|a Image Processing, Computer-Assisted
|0 (DNLM)D007091
|
650 |
2 |
2 |
|a Machine Learning
|0 (DNLM)D000069550
|
650 |
|
6 |
|a Imagerie pour le diagnostic
|x Techniques num�eriques.
|0 (CaQQLa)201-0395388
|
650 |
|
6 |
|a Intelligence artificielle en m�edecine.
|0 (CaQQLa)201-0180593
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Artificial intelligence
|x Medical applications
|2 fast
|0 (OCoLC)fst00817267
|
650 |
|
7 |
|a Diagnostic imaging
|x Digital techniques
|2 fast
|0 (OCoLC)fst00892359
|
700 |
1 |
|
|a Shen, Dinggang.
|
700 |
1 |
|
|a Sabuncu, Mert Rory,
|d 1979-
|
776 |
0 |
8 |
|i Print version :
|z 9780128040768
|
830 |
|
0 |
|a Elsevier and MICCAI Society book series.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128040768
|z Texto completo
|