Sustainable hydrogen production /
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid system...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2016.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Sustainable Hydrogen Production; Copyright; Contents; Preface; Acknowledgments; Chapter 1: Fundamental Aspects; 1.1. Introduction; 1.2. Physical Quantities and Unit Systems; 1.3. Ideal-Gas Theory; 1.4. Equations of State; 1.5. The Laws of Thermodynamics; 1.6. Exergy; 1.7. Thermodynamic Analysis Through Energy and Exergy; 1.7.1. Mass Balance Equation; 1.7.2. Energy Balance Equation; 1.7.3. Entropy Balance Equation; 1.7.4. Exergy Balance Equation; 1.7.5. Formulations for System Efficiency; 1.7.6. Cost Accounting of Exergy; 1.8. Exergoeconomic Analysis; 1.8.1. EXCEM Method.
- 1.8.2. SPECO Method1.9. Exergoenvironmental Analysis; 1.10. Exergosustainability Assessment; 1.11. Case Study 1: Exergosustainability Assessment of a Concentrated Photovoltaic-Thermal System for Residential Cogeneration; 1.11.1. Assumptions; 1.11.2. Thermodynamic Analysis; 1.11.3. Environmental Impact Analysis; 1.11.4. Economic Analysis; 1.11.5. Exergosustainability Analysis; 1.11.6. Results; 1.11.7. Closing Remark; 1.12. Case Study 2: Exergosustainability Assessment of a High-Temperature Steam Photo-Electrolysis Plant; 1.12.1. Assumptions; 1.12.2. Thermodynamic Analysis.
- 1.12.3. Environmental Impact Analysis1.12.4. Economic Analysis; 1.12.5. Exergosustainability Analysis; 1.12.6. Results; 1.12.7. Closing Remarks; 1.13. Concluding Remarks; References; Study Problems; Chapter 2: Hydrogen and Its Production; 2.1. Introduction; 2.2. Hydrogen and the Environment; 2.3. Hydrogen and Sustainability; 2.4. Hydrogen Properties; 2.5. Green Hydrogen Sources; 2.6. Hydrogen Production Methods; 2.7. Hydrogen Storage and Distribution; 2.8. Fuel Cells; 2.8.1. Proton Exchange Membrane Fuel Cells; 2.8.2. Phosphoric Acid Fuel Cells; 2.8.3. Solid Oxide Fuel Cells.
- 2.8.4. Alkaline Fuel Cells2.8.5. Molten Carbonate Fuel Cells; 2.8.6. Direct Methanol Fuel Cells; 2.8.7. Direct Ammonia Fuel Cells; 2.9. Hydrogen Applications; 2.10. Concluding Remarks; References; Study Problems; Chapter 3: Hydrogen Production by Electrical Energy; 3.1. Introduction; 3.2. Fundamentals of Electrochemical Hydrogen Production; 3.2.1. Thermodynamic Analysis of Electrochemical Reactions; 3.2.2. Kinetics and Transport Process Analyses; 3.2.3. Efficiency Formulations for Electrolyzers; 3.3. Alkaline Electrolyzers; 3.4. PEM Electrolyzers.
- 3.5. Solid Oxide Electrolyzers With Oxygen Ion Conduction3.6. Solid Oxide Electrolyzers With Proton Conduction; 3.7. Chloralkali Electrochemical Process for Chlorine and Hydrogen Production; 3.8. Other Electrochemical Methods of Hydrogen Production; 3.9. Integrated Systems for Hydrogen Production by Electrical Energy; 3.9.1. Hydroelectric Hydrogen; 3.9.2. Wind PEM Electrolyzer Systems; 3.9.3. Geothermally Driven Electrolysis Systems; 3.9.4. Ocean Energy Systems Integrated With Water Electrolysis; 3.9.5. Solar Thermal and Biomass Power Generators Integrated With Water Electrolysis.