Cargando…

Sustainable hydrogen production /

Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid system...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Din�cer, �Ibrahim, 1964-
Otros Autores: Zamfirescu, Calin
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_ocn956521198
003 OCoLC
005 20231120112128.0
006 m o d
007 cr |n|||||||||
008 160812s2016 ne ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d OPELS  |d OCLCF  |d N$T  |d OCLCQ  |d QCL  |d OCLCQ  |d FEM  |d TEFOD  |d OCLCQ  |d U3W  |d D6H  |d EZ9  |d OCLCQ  |d LQU  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968013305  |a 992906167  |a 1105187334  |a 1105566515 
020 |a 0128017481  |q (electronic bk.) 
020 |a 9780128017487  |q (electronic bk.) 
020 |z 9780128015636 
020 |z 0128015632 
035 |a (OCoLC)956521198  |z (OCoLC)968013305  |z (OCoLC)992906167  |z (OCoLC)1105187334  |z (OCoLC)1105566515 
050 4 |a TP245.H9 
072 7 |a TEC  |x 031000  |2 bisacsh 
082 0 4 |a 665.8/1  |2 23 
100 1 |a Din�cer, �Ibrahim,  |d 1964- 
245 1 0 |a Sustainable hydrogen production /  |c Ibrahim Dincer, Calin Zamfirescu. 
260 |a Amsterdam, Netherlands :  |b Elsevier,  |c 2016. 
300 |a 1 online resource (494 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Print version record. 
505 0 |a Front Cover; Sustainable Hydrogen Production; Copyright; Contents; Preface; Acknowledgments; Chapter 1: Fundamental Aspects; 1.1. Introduction; 1.2. Physical Quantities and Unit Systems; 1.3. Ideal-Gas Theory; 1.4. Equations of State; 1.5. The Laws of Thermodynamics; 1.6. Exergy; 1.7. Thermodynamic Analysis Through Energy and Exergy; 1.7.1. Mass Balance Equation; 1.7.2. Energy Balance Equation; 1.7.3. Entropy Balance Equation; 1.7.4. Exergy Balance Equation; 1.7.5. Formulations for System Efficiency; 1.7.6. Cost Accounting of Exergy; 1.8. Exergoeconomic Analysis; 1.8.1. EXCEM Method. 
505 8 |a 1.8.2. SPECO Method1.9. Exergoenvironmental Analysis; 1.10. Exergosustainability Assessment; 1.11. Case Study 1: Exergosustainability Assessment of a Concentrated Photovoltaic-Thermal System for Residential Cogeneration; 1.11.1. Assumptions; 1.11.2. Thermodynamic Analysis; 1.11.3. Environmental Impact Analysis; 1.11.4. Economic Analysis; 1.11.5. Exergosustainability Analysis; 1.11.6. Results; 1.11.7. Closing Remark; 1.12. Case Study 2: Exergosustainability Assessment of a High-Temperature Steam Photo-Electrolysis Plant; 1.12.1. Assumptions; 1.12.2. Thermodynamic Analysis. 
505 8 |a 1.12.3. Environmental Impact Analysis1.12.4. Economic Analysis; 1.12.5. Exergosustainability Analysis; 1.12.6. Results; 1.12.7. Closing Remarks; 1.13. Concluding Remarks; References; Study Problems; Chapter 2: Hydrogen and Its Production; 2.1. Introduction; 2.2. Hydrogen and the Environment; 2.3. Hydrogen and Sustainability; 2.4. Hydrogen Properties; 2.5. Green Hydrogen Sources; 2.6. Hydrogen Production Methods; 2.7. Hydrogen Storage and Distribution; 2.8. Fuel Cells; 2.8.1. Proton Exchange Membrane Fuel Cells; 2.8.2. Phosphoric Acid Fuel Cells; 2.8.3. Solid Oxide Fuel Cells. 
505 8 |a 2.8.4. Alkaline Fuel Cells2.8.5. Molten Carbonate Fuel Cells; 2.8.6. Direct Methanol Fuel Cells; 2.8.7. Direct Ammonia Fuel Cells; 2.9. Hydrogen Applications; 2.10. Concluding Remarks; References; Study Problems; Chapter 3: Hydrogen Production by Electrical Energy; 3.1. Introduction; 3.2. Fundamentals of Electrochemical Hydrogen Production; 3.2.1. Thermodynamic Analysis of Electrochemical Reactions; 3.2.2. Kinetics and Transport Process Analyses; 3.2.3. Efficiency Formulations for Electrolyzers; 3.3. Alkaline Electrolyzers; 3.4. PEM Electrolyzers. 
505 8 |a 3.5. Solid Oxide Electrolyzers With Oxygen Ion Conduction3.6. Solid Oxide Electrolyzers With Proton Conduction; 3.7. Chloralkali Electrochemical Process for Chlorine and Hydrogen Production; 3.8. Other Electrochemical Methods of Hydrogen Production; 3.9. Integrated Systems for Hydrogen Production by Electrical Energy; 3.9.1. Hydroelectric Hydrogen; 3.9.2. Wind PEM Electrolyzer Systems; 3.9.3. Geothermally Driven Electrolysis Systems; 3.9.4. Ocean Energy Systems Integrated With Water Electrolysis; 3.9.5. Solar Thermal and Biomass Power Generators Integrated With Water Electrolysis. 
520 |a Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems. Addresses the fundamentals of hydrogen production using electrical, thermal, photonic, and biochemical energies Presents new models, methods, and parameters for performance assessment Provides historical background where appropriate Outlines key connections between hydrogen production methods and environmental impact/sustainable development Provides illustrative examples, case studies, and study problems within each chapter. 
504 |a Includes bibliographical references at the end of each chapters and index. 
650 0 |a Hydrogen. 
650 0 |a Hydrogen as fuel. 
650 0 |a Hydrogen industry. 
650 2 |a Hydrogen  |0 (DNLM)D006859 
650 6 |a Hydrog�ene.  |0 (CaQQLa)201-0023816 
650 6 |a Hydrog�ene (Combustible)  |0 (CaQQLa)201-0077361 
650 6 |a Hydrog�ene  |x Industrie.  |0 (CaQQLa)201-0170318 
650 7 |a TECHNOLOGY & ENGINEERING  |x Power Resources  |x General.  |2 bisacsh 
650 7 |a Hydrogen  |2 fast  |0 (OCoLC)fst00964990 
650 7 |a Hydrogen as fuel  |2 fast  |0 (OCoLC)fst00965012 
650 7 |a Hydrogen industry  |2 fast  |0 (OCoLC)fst00965042 
700 1 |a Zamfirescu, Calin. 
776 0 8 |i Print version:  |a Dincer, Ibrahim.  |t Sustainable hydrogen production.  |d Amsterdam, Netherlands : Elsevier, �2016  |h xi, 479 pages  |z 9780128015636 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128015636  |z Texto completo