Cargando…

An introduction to mathematical analysis /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rankin, Robert A. (Robert Alexander), 1915-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Pergamon Press, 1963.
Colección:International series in pure and applied mathematics ; v. 43.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 SCIDIR_ocn956521178
003 OCoLC
005 20231120111907.0
006 m o d
007 cr |n|||||||||
008 160812s1963 enk ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d N$T  |d YDX  |d OPELS  |d OCLCF  |d OCLCQ  |d TEFOD  |d OCLCQ  |d MERUC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 896409723  |a 956481339  |a 956624557 
020 |a 1483137309  |q (electronic bk.) 
020 |a 9781483137308  |q (electronic bk.) 
020 |z 9780080101828 
035 |a (OCoLC)956521178  |z (OCoLC)896409723  |z (OCoLC)956481339  |z (OCoLC)956624557 
050 4 |a QA37 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 517.5  |2 23 
100 1 |a Rankin, Robert A.  |q (Robert Alexander),  |d 1915- 
245 1 3 |a An introduction to mathematical analysis /  |c by Robert A. Rankin. 
260 |a Oxford :  |b Pergamon Press,  |c 1963. 
300 |a 1 online resource (625) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a International series of monographs on pure and applied mathematics ;  |v v. 43 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover ; An Introduction to Mathematical Analysis ; Copyright Page ; Table of Contents ; Dedication ; PREFACE; LIST OF SYMBOLS AND NOTATIONS; CHAPTER 1. FUNDAMENTAL IDEAS AND ASSUMPTIONS ; 1. INTRODUCTION; 2. ASSUMPTIONS RELATING TO THE FIELD OPERATIONS ; 3. ASSUMPTIONS RELATING TO THE ORDERING OF THE REAL NUMBERS ; 4. MATHEMATICAL INDUCTION; 5. UPPER AND LOWER BOUNDS OF SETS OF REAL NUMBERS; 6. FUNCTIONS; CHAPTER 2. LIMITS AND CONTINUITY ; 7. LIMITS OF REAL FUNCTIONS DEFINED ON THE POSITIVE INTEGERS ; 8. LIMITS OF REAL FUNCTIONS OF A REAL VARIABLE x AS x TENDS TO INFINITY. 
505 8 |a 9. ELEMENTARY TOPOLOGICAL IDEAS10. LIMITS OF REAL FUNCTIONS AT FINITE POINTS; 11. CONTINUITY; 12. INVERSE FUNCTIONS AND FRACTIONAL INDICES; CHAPTER 3. DIFFERENTIABILITY ; 13. DERIVATIVES; 14. GENERAL THEOREMS CONCERNING REALFUNCTIONS; 15. MAXIMA, MINIMA AND CONVEXITY; 16. COMPLEX NUMBERS AND FUNCTIONS; CHAPTER 4. INFINITE SERIES ; 17. ELEMENTARY PROPERTIES OF INFINITE SERIES; 18. SERIES WITH NON-NEGATIVE TERMS; 19. ABSOLUTE AND CONDITIONAL CONVERGENCE; 20. THE DECIMAL NOTATION FOR REAL NUMBERS; CHAPTER 5. FUNCTIONS DEFINED BY POWER SERIES ; 21. GENERAL THEORY OF POWER SERIES. 
505 8 |a 22. REAL POWER SERIES23. THE EXPONENTIAL AND LOGARITHMICFUNCTIONS; 24. THE TRIGONOMETRIC FUNCTIONS; 25. THE HYPERBOLIC FUNCTIONS; 26. COMPLEX INDICES; CHAPTER 6. INTEGRATION ; 27. THE INDEFINITE INTEGRAL; 28. INTERVAL FUNCTIONS AND FUNCTIONSOF BOUNDED VARIATION; 29. THE RIEMANN-STIELTJES INTEGRAL ; 30. THE RIEMANN INTEGRAL; 31. CURVES; 32. AREA; CHAPTER 7. CONVERGENCE AND UNIFORMITY; 33. UPPER AND LOWER LIMITS AND THEIR APPLICATIONS ; 34. FURTHER CONVERGENCE TESTS FOR INFINITESERIES; 35. UNIFORM CONVERGENCE; 36. IMPROPER INTEGRALS; 37. DOUBLE SERIES; 38. INFINITE PRODUCTS. 
650 0 |a Mathematical analysis. 
650 6 |a Analyse math�ematique.  |0 (CaQQLa)201-0001156 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast  |0 (OCoLC)fst01012068 
653 0 |a Mathematical analysis 
830 0 |a International series in pure and applied mathematics ;  |v v. 43. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780080101828  |z Texto completo