|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
SCIDIR_ocn956521178 |
003 |
OCoLC |
005 |
20231120111907.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160812s1963 enk ob 001 0 eng d |
040 |
|
|
|a IDEBK
|b eng
|e pn
|c IDEBK
|d N$T
|d EBLCP
|d N$T
|d YDX
|d OPELS
|d OCLCF
|d OCLCQ
|d TEFOD
|d OCLCQ
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 896409723
|a 956481339
|a 956624557
|
020 |
|
|
|a 1483137309
|q (electronic bk.)
|
020 |
|
|
|a 9781483137308
|q (electronic bk.)
|
020 |
|
|
|z 9780080101828
|
035 |
|
|
|a (OCoLC)956521178
|z (OCoLC)896409723
|z (OCoLC)956481339
|z (OCoLC)956624557
|
050 |
|
4 |
|a QA37
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 517.5
|2 23
|
100 |
1 |
|
|a Rankin, Robert A.
|q (Robert Alexander),
|d 1915-
|
245 |
1 |
3 |
|a An introduction to mathematical analysis /
|c by Robert A. Rankin.
|
260 |
|
|
|a Oxford :
|b Pergamon Press,
|c 1963.
|
300 |
|
|
|a 1 online resource (625)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a International series of monographs on pure and applied mathematics ;
|v v. 43
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover ; An Introduction to Mathematical Analysis ; Copyright Page ; Table of Contents ; Dedication ; PREFACE; LIST OF SYMBOLS AND NOTATIONS; CHAPTER 1. FUNDAMENTAL IDEAS AND ASSUMPTIONS ; 1. INTRODUCTION; 2. ASSUMPTIONS RELATING TO THE FIELD OPERATIONS ; 3. ASSUMPTIONS RELATING TO THE ORDERING OF THE REAL NUMBERS ; 4. MATHEMATICAL INDUCTION; 5. UPPER AND LOWER BOUNDS OF SETS OF REAL NUMBERS; 6. FUNCTIONS; CHAPTER 2. LIMITS AND CONTINUITY ; 7. LIMITS OF REAL FUNCTIONS DEFINED ON THE POSITIVE INTEGERS ; 8. LIMITS OF REAL FUNCTIONS OF A REAL VARIABLE x AS x TENDS TO INFINITY.
|
505 |
8 |
|
|a 9. ELEMENTARY TOPOLOGICAL IDEAS10. LIMITS OF REAL FUNCTIONS AT FINITE POINTS; 11. CONTINUITY; 12. INVERSE FUNCTIONS AND FRACTIONAL INDICES; CHAPTER 3. DIFFERENTIABILITY ; 13. DERIVATIVES; 14. GENERAL THEOREMS CONCERNING REALFUNCTIONS; 15. MAXIMA, MINIMA AND CONVEXITY; 16. COMPLEX NUMBERS AND FUNCTIONS; CHAPTER 4. INFINITE SERIES ; 17. ELEMENTARY PROPERTIES OF INFINITE SERIES; 18. SERIES WITH NON-NEGATIVE TERMS; 19. ABSOLUTE AND CONDITIONAL CONVERGENCE; 20. THE DECIMAL NOTATION FOR REAL NUMBERS; CHAPTER 5. FUNCTIONS DEFINED BY POWER SERIES ; 21. GENERAL THEORY OF POWER SERIES.
|
505 |
8 |
|
|a 22. REAL POWER SERIES23. THE EXPONENTIAL AND LOGARITHMICFUNCTIONS; 24. THE TRIGONOMETRIC FUNCTIONS; 25. THE HYPERBOLIC FUNCTIONS; 26. COMPLEX INDICES; CHAPTER 6. INTEGRATION ; 27. THE INDEFINITE INTEGRAL; 28. INTERVAL FUNCTIONS AND FUNCTIONSOF BOUNDED VARIATION; 29. THE RIEMANN-STIELTJES INTEGRAL ; 30. THE RIEMANN INTEGRAL; 31. CURVES; 32. AREA; CHAPTER 7. CONVERGENCE AND UNIFORMITY; 33. UPPER AND LOWER LIMITS AND THEIR APPLICATIONS ; 34. FURTHER CONVERGENCE TESTS FOR INFINITESERIES; 35. UNIFORM CONVERGENCE; 36. IMPROPER INTEGRALS; 37. DOUBLE SERIES; 38. INFINITE PRODUCTS.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
6 |
|a Analyse math�ematique.
|0 (CaQQLa)201-0001156
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical analysis
|2 fast
|0 (OCoLC)fst01012068
|
653 |
|
0 |
|a Mathematical analysis
|
830 |
|
0 |
|a International series in pure and applied mathematics ;
|v v. 43.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780080101828
|z Texto completo
|