Cargando…

Pipeline leak detection handbook /

Pipeline Leak Detection Handbook is a concise, detailed, and inclusive leak detection best practices text and reference book. It begins with the basics of leak detection technologies that include leak detection systems, and information on pipeline leaks, their causes, and subsequent consequences. Th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Henrie, Morgan (Autor), Carpenter, Philip (Autor), Nicholas, R. Edward (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Gulf Professional Publishing is an imprint of Elsevier, 2016.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1. Introduction
  • 1.1. Introduction
  • 1.2. Why Are Pipelines Important?
  • 1.3. Pipeline Basics
  • 1.4. Pipeline Design Essentials
  • 1.4.1. Physical Components
  • 1.4.2. Data Acquisition and Control
  • 1.5. Pipeline Leaks, Ruptures, Spills, and Theft
  • 1.5.1. Breach of Integrity Incident Rates
  • 1.5.2.Commodity Theft
  • 1.6. Leak Detection Approaches
  • 1.7. The Book Structure
  • 1.8. Terminology
  • 1.9. Nomenclature
  • References
  • 2. Pipeline Leak Detection Basics
  • 2.1. The Challenges of Detecting Pipeline Leaks
  • 2.2. The Toll Road and the Free-Rider Problem
  • 2.2.1. Directly Detecting Free Riders
  • 2.2.2. Detecting Free Riders by Counting Cars
  • 2.3. Leak Location and Other Issues
  • 2.4. Leak Detection and Theft
  • 2.5. Functional Requirements
  • 2.6. The Fundamental Principles Summarized
  • 2.7. Architectural Foundations
  • 2.8.A Taxonomy of Pipeline Leak Detection Systems
  • 3. Mass Balance Leak Detection
  • 3.1. Leaks and Conservation of Mass
  • 3.2. Pipeline Mass Balance Section
  • 3.3. Leak Detection by Mass Balance: Foundational Principles
  • 3.4. Volume Balance at Standard Conditions as a Proxy for Mass Balance
  • 3.4.1. Conservation of Standard Volume Is Not a Physical Principle
  • 3.4.2. Formulation of Mass Balance Leak Detection in Terms of Volume at STP
  • 3.5. Impact of Uncertainties in Mass/Volume Balances on Leak Detection
  • 3.5.1. Determining the Flow Balance
  • 3.5.2. Determining the Packing Rate
  • 3.6. API 1130 Applicable Classification of Mass Balance Systems
  • 3.6.1. Line Balance CPM
  • 3.6.2. Volume Balance CPM
  • 3.6.3. Modified Volume Balance CPM
  • 3.6.4.Compensated Mass Balance
  • 3.6.5. Real-Time Model Based Systems
  • 3.7. Our Classification of Mass Balance-Based Leak Detection Systems
  • References
  • 4. Real-Time Transient Model
  • Based Leak Detection
  • 4.1. The Real-Time Transient Model
  • 4.1.1. Fundamental Equations and Physics
  • 4.2. Numerical Methods
  • 4.2.1. Explicit Numerical Solution
  • 4.2.2. Method of Characteristics Solution
  • 4.2.3. Implicit Numerical Solution
  • 4.2.4.A Comparison of Numerical Methods
  • 4.3. Measurements and Boundary Conditions
  • 4.3.1. Measurement Placement, Availability, and Reliability
  • 4.3.2. Selection of Boundary Conditions
  • 4.3.3. Boundary Condition Strategies
  • 4.4. State Estimation and Related Subjects
  • 4.5. Leak Detection Signals
  • 4.6. Using the Leak Signals to Detect Leaks
  • 4.7. Estimating Leak Location
  • 4.8. Impact of Fluid Type: Liquids, Cases, and Multiphase Flows
  • 4.8.1. Liquid Pipeline Leak Detection
  • 4.8.2. Gas Pipeline Leak Detection
  • 4.8.3. Liquid Pipelines With Slack Line Flow
  • 4.8.4. Multiphase Flow-Based RTTMs
  • 4.8.5. Dense Phase Fluids
  • 4.9. RTTM Uncertainty Recap
  • References
  • 5. Statistical Processing and Leak Detection
  • 5.1. Introduction to Leak Signal Processing
  • 5.2. Signal Processing Basics
  • 5.2.1. Outlier Rejection
  • 5.2.2. Data Averaging/Accumulation
  • 5.2.3. Use of Multiple Averaging Periods
  • 5.2.4. Long-Term Average Analysis
  • 5.3. Statistical Processing and Significance Testing
  • 5.3.1. Random Noise, Time Correlation, Probability Distributions, and Significance Testing
  • 5.3.2. Fixed Sample Size Significance Tests
  • 5.3.3. Colored Noise, Whitening Filters, and Decorrelation
  • 5.3.4. Sequential Probability Ratio Testing
  • 5.3.5. Change Point Detection
  • 5.3.6. Multiple Aggregators
  • 5.3.7. False Alarms
  • 5.3.8. Real-World Adjustments
  • 5.3.9. Advanced Signal Detection Approaches
  • References
  • 6. Rarefaction Wave and Deviation Alarm Systems
  • 6.1. Rarefaction Wave Physical Basis and Equations
  • 6.2. Pressure Signal and Event Processing
  • 6.3. Leak Detection and Location Using Rarefaction Waves
  • 6.4. Rarefaction Wave Leak Detection Issues, Improvements, and Assessment
  • 6.5. Deviation Alarm Systems
  • 7. External and Intermittent Leak Detection System Types
  • 7.1. Spill Migration
  • 7.2. Direct Observation
  • 7.2.1. Site Workers
  • 7.2.2. Planned or Scheduled Observer
  • 7.2.3. Third-Party Observation
  • 7.3. Distributed Cable
  • Based Leak Detection Technology
  • 7.4. Fiber Optic Cable
  • Based Sensor Systems
  • 7.5. Hydrocarbon-Sensing Tubes
  • 7.6. Fixed/Discrete Sensor Leak Detection Systems
  • 7.6.1. Fixed Infrared and Spectrographic Detectors
  • 7.6.2. Infrared Imaging
  • 7.6.3. Fixed Acoustic Sensing
  • 7.6.4. Fixed Hydrocarbon-Sensing Probes
  • 7.6.5. Fixed Vapor or Tracer Element Sensors
  • 7.7. Other External Methods
  • 7.7.1. Ultrasonic Meter External Leak Detection
  • 7.7.2. Intermittent Leak Detection Systems and Methods
  • 7.7.3. Unmanned Aerial Vehicle Leak Detection Technology
  • 7.8. General Assessment
  • Reference
  • 8. Leak Detection System Infrastructure
  • 8.1. Field Instrumentation
  • 8.1.1. Measurement Uncertainty
  • 8.1.2. Time Skew
  • 8.1.3. Data Sampling Processing Best Practices
  • 8.1.4. Dealing With Calibration and Other Instrument Maintenance
  • 8.2. Supporting Telecommunication and Network Infrastructure
  • 8.2.1. Telecommunication Infrastructures
  • 8.2.2. Telecommunication Redundancy
  • 8.2.3. Telecommunication Issues
  • 8.2.4. Telecommunication Best Practices
  • 8.3. SCADA System Considerations
  • 8.3.1. SCADA HMI Considerations
  • 8.4. Historical Archiving of Data
  • 8.4.1. Archiving Measurement Data
  • 8.4.2. Archiving Leak Detection Results and Control Actions
  • 8.5. Resilient System Design
  • References
  • 9. Leak Detection Performance, Testing, and Tuning
  • 9.1. Performance Metrics
  • 9.1.1. Primary Performance Metrics and Leak Detection Performance Mapping
  • 9.1.2. Derived Metrics and LDS System Efficiency
  • 9.2. Tuning and Tradeoffs
  • 9.3. LDS Performance Testing and Evaluation
  • 9.3.1.Commodity Withdrawal Testing for CPM Systems
  • 9.3.2. Field Point Edit-Based Testing of CPM Systems
  • 9.3.3. LDS Software-Based Testing
  • 9.4. LDS Tuning
  • 9.5. Performance Standards
  • References
  • 10. Human Factor Considerations in Leak Detection
  • 10.1. The Human
  • Machine Signal Detection Control Loop
  • 10.1.1. Diagnosing Alarms in the Face of Uncertainty
  • 10.1.2. Human Factors in the Control Room
  • 10.1.3. Data Display, Presentation, and Integration
  • 10.1.4. CRM Regulatory Requirements, Industry Standards, and Recommended Practices
  • 10.1.5. Alarm Management Overview
  • 10.1.6. Balancing Sensitivity and False Alarms
  • 10.1.7. Training
  • 10.1.8. Human Factors Summary
  • 10.2. Direct Observation Leak Detection
  • 10.2.1. Physical Release Models
  • 10.2.2. Detection of Leaks by the Public
  • References
  • 11. Implementation and Installation of Pipeline Leak Detection Systems
  • 11.1. Performance Requirement Specification
  • 11.2. Leak Detection Technology/Methodology Decision
  • 11.3. LDS System Integration Requirements
  • 11.3.1. External Leak Detection Integration Requirements
  • 11.3.2. Internal Leak Detection Integration Requirements
  • 11.4. System Testing
  • 11.5. Vendor Identification and Assessment
  • 11.6.Commissioning
  • 11.7. Long-Term Support Issues
  • References
  • 12. Regulatory Requirements
  • 12.1. The United States of America Regulatory Environment
  • 12.1.1. US Interstate Federal Regulations
  • 12.2. Canada
  • 12.3. Germany
  • 12.4. Regulatory Requirements in Other Jurisdictions
  • 12.4.1. Brazil
  • 12.4.2. Great Britain
  • References
  • 13. Leak Detection and Risk-Based Integrity Management
  • 13.1. Quantifying Integrity Breach Risk and Impact
  • 13.1.1. Liquid Pipeline Spill Risk, Magnitude, and Cost
  • 13.1.2. Liquid Commodity Spill Source Classification
  • 13.1.3. Gas-Phase Commodity Integrity Breaches
  • 13.1.4. Leak Detection Technology Versus Other Detection Mechanisms
  • 13.2. Understanding the Consequences of a Spill
  • 13.2.1. Low-Vapor-Pressure Liquid Pipeline Spills
  • 13.2.2. HVL Spills
  • 13.2.3. Gas Pipeline Ruptures
  • 13.2.4. Summary
  • 13.3. Leak Detection as a Component of Pipeline Loss-of-Integrity Risk Management
  • 13.3.1. Analytical Basis
  • 13.3.2. Pipeline Design to Minimize Loss of Containment Impact
  • 13.3.3. Preventive Maintenance Program
  • 13.3.4. Effective Leak Detection Program, Technology, and Procedures
  • 13.3.5. Effective Response Plan
  • 13.4. Conclusion
  • References.