Cargando…

Perspectives on data science for software engineering /

Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Menzies, Tim (Editor ), Williams, Laurie, 1962- (Editor ), Zimmermann, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, 2016.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale.
  • Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice.
  • Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics�� of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management.
  • Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References.