Cargando…

Perspectives on data science for software engineering /

Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Menzies, Tim (Editor ), Williams, Laurie, 1962- (Editor ), Zimmermann, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Morgan Kaufmann is an imprint of Elsevier, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 SCIDIR_ocn953844182
003 OCoLC
005 20231120112123.0
006 m o d
007 cr cnu---unuuu
008 160721s2016 maua ob 000 0 eng d
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d OPELS  |d UIU  |d EBLCP  |d N$T  |d UMI  |d IDEBK  |d OCLCQ  |d N$T  |d OCLCF  |d UPM  |d TOH  |d STF  |d COO  |d NAM  |d DEBBG  |d S9I  |d OCLCQ  |d LVT  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 953849331  |a 957279026  |a 1229456625 
020 |a 9780128042618  |q (electronic bk.) 
020 |a 0128042613  |q (electronic bk.) 
020 |z 0128042060 
020 |z 9780128042069 
035 |a (OCoLC)953844182  |z (OCoLC)953849331  |z (OCoLC)957279026  |z (OCoLC)1229456625 
050 4 |a QA76.758  |b .P47 2016 
072 7 |a COM  |x 051000  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 0 0 |a Perspectives on data science for software engineering /  |c edited by Tim Menzies, Laurie Williams, Thomas Zimmermann. 
264 1 |a Cambridge, MA :  |b Morgan Kaufmann is an imprint of Elsevier,  |c 2016. 
300 |a 1 online resource (xxix, 378 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed Aug. 1, 2016). 
505 0 |a Front Cover; Perspectives on Data Science for Software Engineering; Copyright; Contents; Contributors; Acknowledgments; Introduction; Perspectives on data science for software engineering; Why This Book?; About This Book; The Future; References; Software analytics and its application in practice; Six Perspectives of Software Analytics; Experiences in Putting Software Analytics into Practice; References; Seven principles of inductive software engineering: What we do is different; Different and Important; Principle #1: Humans Before Algorithms; Principle #2: Plan for Scale. 
505 8 |a Principle #3: Get Early FeedbackPrinciple #4: Be Open Minded; Principle #5: Be smart with your learning; Principle #6: Live With the Data You Have; Principle #7: Develop a Broad Skill Set That Uses a Big Toolkit; References; The need for data analysis patterns (in software engineering); The Remedy Metaphor; Software Engineering Data; Needs of Data Analysis Patterns; Building Remedies for Data Analysis in Software Engineering Research; References; From software data to software theory: The path less traveled; Pathways of Software Repository Research; From Observation, to Theory, to Practice. 
505 8 |a Dynamic Artifacts Are Here to StayAcknowledgments; References; Mobile app store analytics; Introduction; Understanding End Users; Conclusion; References; The naturalness of software*; Introduction; Transforming Software Practice; Porting and Translation; The ``Natural Linguistics�� of Code; Analysis and Tools; Assistive Technologies; Conclusion; References; Advances in release readiness; Predictive Test Metrics; Universal Release Criteria Model; Best Estimation Technique; Resource/Schedule/Content Model; Using Models in Release Management. 
505 8 |a Research to Implementation: A Difficult (but Rewarding) JourneyHow to tame your online services; Background; Service Analysis Studio; Success Story; References; Measuring individual productivity; No Single and Simple Best Metric for Success/Productivity; Measure the Process, Not Just the Outcome; Allow for Measures to Evolve; Goodharts Law and the Effect of Measuring; How to Measure Individual Productivity?; References; Stack traces reveal attack surfaces; Another Use of Stack Traces?; Attack Surface Approximation; References; Visual analytics for software engineering data; References. 
504 |a Includes bibliographical references. 
520 |a Presenting the best practices of seasoned data miners in software engineering, this book offers unique insights into the wisdom of the community{OCLCbr#92}s leaders gathered to share hard-won lessons from the trenches. --  |c Edited summary from book. 
650 0 |a Software engineering. 
650 6 |a G�enie logiciel.  |0 (CaQQLa)201-0121595 
650 7 |a COMPUTERS / General.  |2 bisacsh 
650 7 |a Software engineering  |2 fast  |0 (OCoLC)fst01124185 
700 1 |a Menzies, Tim,  |e editor. 
700 1 |a Williams, Laurie,  |d 1962-  |e editor. 
700 1 |a Zimmermann, Thomas,  |e editor. 
776 0 8 |i Print version:  |z 0128042060  |z 9780128042069  |w (OCoLC)926742865 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128042069  |z Texto completo