Cargando…

Environmental data analysis with MatLab /

Environmental Data Analysis with MatLab is a new edition that expands fundamentally on the original with an expanded tutorial approach, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. Sinc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Menke, William (Autor), Menke, Joshua E. (Joshua Ephraim), 1976- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier Academic Press, [2016]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn951966622
003 OCoLC
005 20231120112117.0
006 m o d
007 cr cnu---unuuu
008 160621s2016 ne a ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d OCLCO  |d VT2  |d WYU  |d VLY  |d OCLCO  |d OCLCQ  |d DST  |d ZYU  |d OCLCQ  |d FZL  |d OCLCQ  |d OCLCO 
019 |a 1005838402  |a 1008955023  |a 1066580888  |a 1103265901  |a 1152977206  |a 1162295404  |a 1192352122  |a 1235838323  |a 1240536414  |a 1262689232  |a 1300481544  |a 1303356812  |a 1380766068 
020 |a 9780128045503  |q (electronic bk.) 
020 |a 0128045507  |q (electronic bk.) 
020 |z 9780128044889 
020 |z 0128044888 
024 8 |a C20150019931 
024 8 |a 9780128045503 
035 |a (OCoLC)951966622  |z (OCoLC)1005838402  |z (OCoLC)1008955023  |z (OCoLC)1066580888  |z (OCoLC)1103265901  |z (OCoLC)1152977206  |z (OCoLC)1162295404  |z (OCoLC)1192352122  |z (OCoLC)1235838323  |z (OCoLC)1240536414  |z (OCoLC)1262689232  |z (OCoLC)1300481544  |z (OCoLC)1303356812  |z (OCoLC)1380766068 
050 4 |a GE45.M37  |b M46 2016eb 
082 0 4 |a 363.7/0015118  |2 23 
100 1 |a Menke, William,  |e author. 
245 1 0 |a Environmental data analysis with MatLab /  |c William Menke, Joshua Menke. 
250 |a Second edition. 
264 1 |a Amsterdam :  |b Elsevier Academic Press,  |c [2016] 
300 |a 1 online resource (xvii, 321 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
504 |a Includes bibliographical references and index 
520 |a Environmental Data Analysis with MatLab is a new edition that expands fundamentally on the original with an expanded tutorial approach, new crib sheets, and problem sets providing a clear learning path for students and researchers working to analyze real data sets in the environmental sciences. Since publication of the bestselling Environmental Data Analysis with MATLAB, many advances have been made in environmental data analysis. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often noisy data drawn from a broad range of sources. The work teaches the basics of the underlying theory of data analysis and then reinforces that knowledge with carefully chosen, realistic scenarios. MATLAB, a commercial data processing environment, is used in these scenarios. Significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. This new edition, though written in a self-contained way, is supplemented with data and MATLAB scripts that can be used as a data analysis tutorial. New features include boxed crib sheets to help identify major results and important formulas and give brief advice on how and when they should be used. Numerical derivatives and integrals are derived and illustrated. Includes log-log plots with further examples of their use. Discusses new datasets on precipitation and stream flow. Topical enhancement applies the chi-squared test to the results of the generalized least squares method. New coverage of cluster analysis and approximation techniques that are widely applied in data analysis, including Taylor Series and low-order polynomial approximations; non-linear least-squares with Newton's method;and pre-calculation and updating techniques applicable to real time data acquisition. 
588 0 |a Print version record. 
505 0 |a Front Cover; Environmental Data Analysiswith MATLAB�; Copyright; Dedication; Contents; Preface; Advice on scripting for beginners; Chapter 1: Data analysis with MatLab; 1.1. Why MatLab?; 1.2. Getting started with MatLab; 1.3. Getting organized; 1.4. Navigating folders; 1.5. Simple arithmetic and algebra; 1.6. Vectors and matrices; 1.7. Multiplication of vectors of matrices; 1.8. Element access; 1.9. Representing functions; 1.10. To loop or not to loop; 1.11. The matrix inverse; 1.12. Loading data from a file; 1.13. Plotting data; 1.14. Saving data to a file 
505 8 |a 1.15. Some advice on writing scripts1.15.1. Think before you type; 1.15.2. Name variables consistently; 1.15.3. Save old scripts; 1.15.4. Cut and paste sparingly; 1.15.5. Start small; 1.15.6. Test your scripts; 1.15.7. Comment your scripts; 1.15.8. Don't be too clever; Problems; Chapter 2: A first look at data; 2.1. Look at your data!; 2.2. More on MatLab graphics; 2.3. Rate information; 2.4. Scatter plots and their limitations; Problems; Chapter 3: Probability and what it has to do with data analysis; 3.1. Random variables; 3.2. Mean, median, and mode; 3.3. Variance 
505 8 |a 3.4. Two important probability density functions3.5. Functions of a random variable; 3.6. Joint probabilities; 3.7. Bayesian inference; 3.8. Joint probability density functions; 3.9. Covariance; 3.10. Multivariate distributions; 3.11. The multivariate Normal distributions; 3.12. Linear functions of multivariate data; Problems; References; Chapter 4: The power of linear models; 4.1. Quantitative models, data, and model parameters; 4.2. The simplest of quantitative models; 4.3. Curve fitting; 4.4. Mixtures; 4.5. Weighted averages; 4.6. Examining error; 4.7. Least squares; 4.8. Examples 
505 8 |a 4.9. Covariance and the behavior of errorProblems; Chapter 5: Quantifying preconceptions; 5.1. When least square fails; 5.2. Prior information; 5.3. Bayesian inference; 5.4. The product of Normal probability density distributions; 5.5. Generalized least squares; 5.6. The role of the covariance of the data; 5.7. Smoothness as prior information; 5.8. Sparse matrices; 5.9. Reorganizing grids of model parameters; Problems; References; Chapter 6: Detecting periodicities; 6.1. Describing sinusoidal oscillations; 6.2. Models composed only of sinusoidal functions; 6.3. Going complex 
505 8 |a 6.4. Lessons learned from the integral transform6.5. Normal curve; 6.6. Spikes; 6.7. Area under a function; 6.8. Time-delayed function; 6.9. Derivative of a function; 6.10. Integral of a function; 6.11. Convolution; 6.12. Nontransient signals; Problems; References; Chapter 7: The past influences the present; 7.1. Behavior sensitive to past conditions; 7.2. Filtering as convolution; 7.3. Solving problems with filters; 7.4. An example of an empirically-derived filter; 7.5. Predicting the future; 7.6. A parallel between filters and polynomials; 7.7. Filter cascades and inverse filters 
542 |f Copyright #169: Elsevier Science Technology  |g 2016 
650 0 |a Environmental sciences  |x Mathematical models. 
650 0 |a Environmental sciences  |x Data processing. 
650 6 |a Sciences de l'environnement  |0 (CaQQLa)201-0097373  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Sciences de l'environnement  |0 (CaQQLa)201-0097373  |x Informatique.  |0 (CaQQLa)201-0380011 
650 7 |a Environmental sciences  |x Data processing  |2 fast  |0 (OCoLC)fst00913482 
650 7 |a Environmental sciences  |x Mathematical models  |2 fast  |0 (OCoLC)fst00913495 
700 1 |a Menke, Joshua E.  |q (Joshua Ephraim),  |d 1976-  |e author. 
776 0 8 |i Print version:  |a Menke, William.  |t Environmental data analysis with MatLab.  |b Second Edition.  |d Amsterdam : Elsevier Academic Press, [2016]  |z 9780128044889  |w (OCoLC)944467274 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128044889  |z Texto completo