|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn951217526 |
003 |
OCoLC |
005 |
20231120112113.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
160606t20162016mau ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d IDEBK
|d N$T
|d UIU
|d OPELS
|d EBLCP
|d OCLCF
|d COO
|d IDB
|d UPM
|d DEBSZ
|d OTZ
|d MERUC
|d OCLCQ
|d U3W
|d D6H
|d WRM
|d NLE
|d AU@
|d OCLCQ
|d DCT
|d NAG
|d OCLCQ
|d S2H
|d OCLCO
|d VT2
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 951594142
|a 1110641670
|a 1235827802
|a 1244445475
|a 1262689167
|
020 |
|
|
|a 9780128091951
|q (electronic bk.)
|
020 |
|
|
|a 0128091959
|q (electronic bk.)
|
020 |
|
|
|a 0128091940
|q (paperback)
|
020 |
|
|
|a 9780128091944
|
020 |
|
|
|z 9780128091944
|q (print)
|
035 |
|
|
|a (OCoLC)951217526
|z (OCoLC)951594142
|z (OCoLC)1110641670
|z (OCoLC)1235827802
|z (OCoLC)1244445475
|z (OCoLC)1262689167
|
050 |
|
4 |
|a QA76.88
|
072 |
|
7 |
|a COM
|x 013000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 018000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 067000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 032000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 037000
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 052000
|2 bisacsh
|
082 |
0 |
4 |
|a 004.1/1
|2 23
|
100 |
1 |
|
|a Jeffers, Jim
|c (Computer engineer),
|e author.
|
245 |
1 |
0 |
|a Intel Xeon Phi processor high performance programming /
|c by Jim Jeffers, James Reinders, Avinash Sodani.
|
250 |
|
|
|a Knights Landing edition.
|
264 |
|
1 |
|a Cambridge, MA :
|b Morgan Kaufmann is an imprint of Elsevier,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Vendor-supplied metadata.
|
505 |
0 |
|
|a Machine generated contents note: ch. 1 Introduction -- Introduction to Many-Core Programming -- Trend: More Parallelism -- Why Intel� Xeon Phi["! Processors Are Needed -- Processors Versus Coprocessor -- Measuring Readiness for Highly Parallel Execution -- What About GPUs? -- Enjoy the Lack of Porting Needed but Still Tune! -- Transformation for Performance -- Hyper-Threading Versus Multithreading -- Programming Models -- Why We Could Skip To Section II Now -- For More Information -- ch. 2 Knights Landing Overview -- Overview -- Instruction Set -- Architecture Overview -- Motivation: Our Vision and Purpose -- Summary -- For More Information -- ch. 3 Programming MCDRAM and Cluster Modes -- Programming for Cluster Modes -- Programming for Memory Modes -- Query Memory Mode and MCDRAM Available -- SNC Performance Implications of Allocation and Threading -- How to Not Hard Code the NUMA Node Numbers -- Approaches to Determining What to Put in MCDRAM.
|
505 |
0 |
|
|a Note continued: Why Rebooting Is Required to Change Modes -- BIOS -- Summary -- For More Information -- ch. 4 Knights Landing Architecture -- Tile Architecture -- Cluster Modes -- Memory Interleaving -- Memory Modes -- Interactions of Cluster and Memory Modes -- Summary -- For More Information -- ch. 5 Intel Omni-Path Fabric -- Overview -- Performance and Scalability -- Transport Layer APIs -- Quality of Service -- Virtual Fabrics -- Unicast Address Resolution -- Multicast Address Resolution -- Summary -- For More Information -- ch. 6 [�]arch Optimization Advice -- Best Performance From 1, 2, or 4 Threads Per Core, Rarely 3 -- Memory Subsystem -- [�]arch Nuances (Tile) -- Direct Mapped MCDRAM Cache -- Advice: Use AVX-512 -- Summary -- For More Information -- ch. 7 Programming Overview for Knights Landing -- To Refactor, or Not to Refactor, That Is the Question -- Evolutionary Optimization of Applications -- Revolutionary Optimization of Applications.
|
505 |
0 |
|
|a Note continued: Know When to Hold'em and When to Fold'em -- For More Information -- ch. 8 Tasks and Threads -- OpenMP -- Fortran 2008 -- Intel TBB -- hStreams -- Summary -- For More Information -- ch. 9 Vectorization -- Why Vectorize? -- How to Vectorize -- Three Approaches to Achieving Vectorization -- Six-Step Vectorization Methodology -- Streaming Through Caches: Data Layout, Alignment, Prefetching, and so on -- Compiler Tips -- Compiler Options -- Compiler Directives -- Use Array Sections to Encourage Vectorization -- Look at What the Compiler Created: Assembly Code Inspection -- Numerical Result Variations with Vectorization -- Summary -- For More Information -- ch. 10 Vectorization Advisor -- Getting Started with Intel Advisor for Knights Landing -- Enabling and Improving AVX-512 Code with the Survey Report -- Memory Access Pattern Report -- AVX-512 Gather/Scatter Profiler -- Mask Utilization and FLOPS Profiler -- Advisor Roofline Report.
|
505 |
0 |
|
|a Note continued: Explore AVX-512 Code Characteristics Without AVX-512 Hardware -- Example -- Analysis of a Computational Chemistry Code -- Summary -- For More Information -- ch. 11 Vectorization with SDLT -- What Is SDLT? -- Getting Started -- SDLT Basics -- Example Normalizing 3d Points with SIMD -- What Is Wrong with AOS Memory Layout and SIMD? -- SIMD Prefers Unit-Stride Memory Accesses -- Alpha-Blended Overlay Reference -- Alpha-Blended Overlay With SDLT -- Additional Features -- Summary -- For More Information -- ch. 12 Vectorization with AVX-512 Intrinsics -- What Are Intrinsics? -- AVX-512 Overview -- Migrating From Knights Corner -- AVX-512 Detection -- Learning AVX-512 Instructions -- Learning AVX-512 Intrinsics -- Step-by-Step Example Using AVX-512 Intrinsics -- Results Using Our Intrinsics Code -- For More Information -- ch. 13 Performance Libraries -- Intel Performance Library Overview -- Intel Math Kernel Library Overview.
|
505 |
0 |
|
|a Note continued: Intel Data Analytics Library Overview -- Together: MKL and DAAL -- Intel Integrated Performance Primitives Library Overview -- Intel Performance Libraries and Intel Compilers -- Native (Direct) Library Usage -- Offloading to Knights Landing While Using a Library -- Precision Choices and Variations -- Performance Tip for Faster Dynamic Libraries -- For More Information -- ch. 14 Profiling and Timing -- Introduction to Knight Landing Tuning -- Event-Monitoring Registers -- Efficiency Metrics -- Potential Performance Issues -- Intel VTune Amplifier XE Product -- Performance Application Programming Interface -- MPI Analysis: ITAC -- HPCToolkit -- Tuning and Analysis Utilities -- Timing -- Summary -- For More Information -- ch. 15 MPI -- Internode Parallelism -- MPI on Knights Landing -- MPI Overview -- How to Run MPI Applications -- Analyzing MPI Application Runs -- Tuning of MPI Applications -- Heterogeneous Clusters -- Recent Trends in MPI Coding.
|
505 |
0 |
|
|a Note continued: Putting it all Together -- Summary -- For More Information -- ch. 16 PGAS Programming Models -- To Share or not to Share -- Why Use PGAS on Knights Landing? -- Programming with PGAS -- Performance Evaluation -- Beyond PGAS -- Summary -- For More Information -- ch. 17 Software-Defined Visualization -- Motivation for Software-Defined Visualization -- Software-Defined Visualization Architecture -- OpenSWR: OpenGL Raster-Graphics Software Rendering -- Embree: High-Performance Ray Tracing Kernel Library -- OSPRay: Scalable Ray Tracing Framework -- Summary -- Image Attributions -- For More Information -- ch. 18 Offload to Knights Landing -- Offload Programming Model-Using with Knights Landing -- Processors Versus Coprocessor -- Offload Model Considerations -- OpenMP Target Directives -- Concurrent Host and Target Execution -- Offload Over Fabric -- Summary -- For More Information -- ch. 19 Power Analysis -- Power Demand Gates Exascale -- Power 101.
|
505 |
0 |
|
|a Note continued: Hardware-Based Power Analysis Techniques -- Software-Based Knights Landing Power Analyzer -- ManyCore Platform Software Package Power Tools -- Running Average Power Limit -- Performance Profiling on Knights Landing -- Intel Remote Management Module -- Summary -- For More Information -- ch. 20 Optimizing Classical Molecular Dynamics in LAMMPS -- Molecular Dynamics -- LAMMPS -- Knights Landing Processors -- LAMMPS Optimizations -- Data Alignment -- Data Types and Layout -- Vectorization -- Neighbor List -- Long-Range Electrostatics -- MPI and OpenMP Parallelization -- Performance Results -- System, Build, and Run Configurations -- Workloads -- Organic Photovoltaic Molecules -- Hydrocarbon Mixtures -- Rhodopsin Protein in Solvated Lipid Bilayer -- Coarse Grain Liquid Crystal Simulation -- Coarse-Grain Water Simulation -- Summary -- Acknowledgment -- For More Information -- ch. 21 High Performance Seismic Simulations -- High-Order Seismic Simulations.
|
505 |
0 |
|
|a Note continued: Numerical Background -- Application Characteristics -- Intel Architecture as Compute Engine -- Highly-Efficient Small Matrix Kernels -- Sparse Matrix Kernel Generation and Sparse/Dense Kernel Selection -- Dense Matrix Kernel Generation: AVX2 -- Dense Matrix Kernel Generation: AVX-512 -- Kernel Performance Benchmarking -- Incorporating Knights Landing's Different Memory Subsystems -- Performance Evaluation -- Mount Merapi -- 1992 Landers -- Summary and Take-Aways -- For More Information -- ch. 22 Weather Research and Forecasting (WRF) -- WRF Overview -- WRF Execution Profile: Relatively Flat -- History of WRF on Intel Many-Core (Intel Xeon Phi Product Line) -- Our Early Experiences with WRF on Knights Landing -- Compiling WRF for Intel Xeon and Intel Xeon Phi Systems -- WRF CONUS12km Benchmark Performance -- MCDRAM Bandwidth -- Vectorization: Boost of AVX-512 Over AVX2 -- Core Scaling -- Summary -- For More Information -- ch. 23 N-Body simulation.
|
505 |
0 |
|
|a Note continued: Parallel Programming for Noncomputer Scientists -- Step-by-Step Improvements -- N-Body Simulation -- Optimization -- Initial Implementation (Optimization Step 0) -- Thread Parallelism (Optimization Step 1) -- Scalar Performance Tuning (Optimization Step 2) -- Vectorization with SOA (Optimization Step 3) -- Memory Traffic (Optimization Step 4) -- Impact of MCDRAM on Performance -- Summary -- For More Information -- ch. 24 Machine Learning -- Convolutional Neural Networks -- OverFeat-FAST Results -- For More Information -- ch. 25 Trinity Workloads -- Out of the Box Performance -- Optimizing MiniGhost OpenMP Performance -- Summary -- For More Information -- ch. 26 Quantum Chromodynamics -- LQCD -- The QPhiX Library and Code Generator -- Wilson-Dslash Operator -- Configuring the QPhiX Code Generator -- The Experimental Setup -- Results -- Conclusion -- For More Information.
|
650 |
|
0 |
|a High performance processors.
|
650 |
|
0 |
|a Computer programming.
|
650 |
|
0 |
|a High performance computing.
|
650 |
|
6 |
|a Processeurs �a hautes performances.
|0 (CaQQLa)201-0331596
|
650 |
|
6 |
|a Programmation (Informatique)
|0 (CaQQLa)201-0002014
|
650 |
|
6 |
|a Superinformatique.
|0 (CaQQLa)201-0297410
|
650 |
|
7 |
|a computer programming.
|2 aat
|0 (CStmoGRI)aat300054641
|
650 |
|
7 |
|a COMPUTERS
|x Computer Literacy.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Computer Science.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Data Processing.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Hardware
|x General.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Information Technology.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Machine Theory.
|2 bisacsh
|
650 |
|
7 |
|a COMPUTERS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Computer programming.
|2 fast
|0 (OCoLC)fst00872390
|
650 |
|
7 |
|a High performance computing.
|2 fast
|0 (OCoLC)fst00956032
|
650 |
|
7 |
|a High performance processors.
|2 fast
|0 (OCoLC)fst00956040
|
650 |
|
7 |
|a COMPUTER SYSTEMS PERFORMANCE.
|2 nasat
|
650 |
|
7 |
|a COMPUTER PROGRAMMING.
|2 nasat
|
700 |
1 |
|
|a Reinders, James,
|e author.
|
700 |
1 |
|
|a Sodani, Avinash,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Jeffers, James.
|t Intel Xeon Phi Processor High Performance Programming : Knights Landing Edition.
|d : Elsevier Science, �2016
|z 9780128091944
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128091944
|z Texto completo
|