Cargando…

Advances in ground-source heat pump systems /

Advances in Ground-Source Heat Pump Systems relates the latest information on source heat pumps (GSHPs), the types of heating and/or cooling systems that transfer heat from, or to, the ground, or, less commonly, a body of water. As one of the fastest growing renewable energy technologies, they are a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rees, Simon J. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford, UK : Woodhead Publishing is an imprint of Elsevier, 2016.
Colección:Woodhead Publishing in energy ; no. 100.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1.An introduction to ground-source heat pump technology / S.J. Rees
  • 1.1.Introduction to the technology
  • 1.2.Historical developments and industry growth
  • 1.3.Current status and outlook
  • References
  • pt. One Closed-loop systems
  • 2.Vertical borehole ground heat exchanger design methods / M. Bernier
  • 2.1.Introduction
  • 2.2.Background: mathematical analysis of ground heat exchangers
  • 2.3.Design methodologies
  • overview
  • 2.4.g-function-based methods
  • 2.5.ASHRAE handbook method
  • 2.6.Improvements to the ASHRAE sizing method
  • 2.7.Design of hybrid ground-source heat pump systems
  • 2.8.Conclusions and recommended future work
  • References
  • 3.Calculation of borehole thermal resistance / J.D. Spitler
  • 3.1.Introduction
  • 3.2.Borehole resistance
  • 3.3.Fluid-to-pipe wall resistance
  • 3.4.Grout resistance
  • 3.5.Internal fluid-to-fluid resistance
  • 3.6.Effective borehole thermal resistance
  • 3.7.Other heat exchanger types
  • 3.8.Groundwater-filled boreholes
  • 3.9.Conclusions
  • Nomenclature
  • Acknowledgment
  • References
  • 4.In situ estimation of ground thermal properties / H.J.L. Witte
  • 4.1.Introduction
  • 4.2.Background and development
  • 4.3.Test assumptions
  • 4.4.Equivalence with pumping tests
  • 4.5.Thermal response test in practice
  • 4.6.Desktop study
  • 4.7.Test borehole design and installation
  • 4.8.Selecting test parameters
  • 4.9.Test evaluation
  • 4.10.Quality of the test result
  • 4.11.Dealing with problems
  • 4.12.Summary
  • Symbols
  • References
  • 5.Horizontal and compact ground heat exchangers / S.J. Rees
  • 5.1.Introduction
  • 5.2.Shallow ground thermal properties
  • 5.3.Horizontal heat exchanger design methods
  • 5.4.Advances in modelling
  • 5.5.Summary
  • References
  • 6.Analytical methods for thermal analysis of vertical ground heat exchangers / Z. Fang
  • 6.1.Introduction
  • 6.2.A framework for analysis of heat transfer in ground heat exchangers
  • 6.3.Pure heat conduction solutions
  • 6.4.Nonpure heat conduction solutions
  • 6.5.Conclusions
  • References
  • 7.Energy geostructures / Y. Rui
  • 7.1.Introduction
  • 7.2.Energy piles
  • 7.3.Energy walls
  • 7.4.Energy tunnels
  • 7.5.Conclusions
  • References
  • pt. Two Open-loop systems and energy storage
  • 8.Surface water heat pump systems / M.S. Mitchell
  • 8.1.Introduction
  • 8.2.Design data
  • 8.3.Physics and modeling of surface water bodies
  • 8.4.Open-loop systems: surface water heat pumps and direct surface water cooling
  • 8.5.Major system components
  • 8.6.Closed-loop systems
  • 8.7.Closed-loop design considerations
  • 8.8.Conclusions
  • References
  • 9.Open-loop heat pump and thermal energy storage systems / B.C. Drijver
  • 9.1.Introduction
  • 9.2.Site information and modelling
  • 9.3.Design and construction
  • 9.4.System operation
  • 9.5.Evaluation
  • References
  • 10.Standing column wells / P. Baudron
  • 10.1.Introduction
  • 10.2.Thermal and hydraulic simulation
  • 10.3.Coupled geochemical simulation
  • 10.4.Conclusions
  • Nomenclature
  • Acknowledgment
  • References
  • 11.Borehole thermal energy storage / S. Gehlin
  • 11.1.Introduction
  • 11.2.Typical features of borehole thermal energy storage
  • 11.3.Environmental aspects
  • 11.4.Worldwide borehole thermal energy storage applications
  • 11.5.Conclusions
  • References
  • pt. Three Building integration and hybrid systems
  • 12.Hybrid ground-source heat pump systems / S.W. Jeon
  • 12.1.The hybrid ground-source heat pump concept
  • 12.2.Hybrid ground-source heat pump system types
  • 12.3.Optimization of hybrid ground-source heat pump
  • 12.4.Efficiency and cost
  • 12.5.Conclusion
  • Acknowledgment
  • References
  • 13.New trends and developments in ground-source heat pumps / J.M. Corberan
  • 13.1.Introduction
  • 13.2.Ground-source heat pump performance
  • 13.3.Compressors for ground-source heat pumps
  • 13.4.New refrigerants
  • 13.5.GSHP heat exchangers
  • 13.6.Dual source heat pumps
  • 13.7.Conclusion
  • References
  • 14.Heat pump modelling / C.P. Underwood
  • 14.1.Introduction
  • 14.2.Steady-state modelling of the vapour compression cycle
  • 14.3.Vapour absorption cycle
  • 14.4.Regression models
  • 14.5.Dynamic-state modelling
  • 14.6.Conclusions
  • Symbols
  • References
  • 15.Geothermally activated building structures / L. Helsen
  • 15.1.What are geothermally activated building structures (GEOTABS)?
  • 15.2.Geothermally activated building structures as a global system concept
  • 15.3.Building design as a crucial part in the geothermally activated building structure concept
  • 15.4.System integration
  • 15.5.Advances in (optimal) control of geothermally activated building structures
  • 15.6.Model predictive control of hybrid GEOTABS systems: a simulation study
  • 15.7.Model predictive control of geothermally activated building structure offices: a case study
  • 15.8.Optimal exploitation of ground thermal energy storage on the long term
  • 15.9.Joining the forces of slow thermally activated building systems and fast air handling units
  • 15.10.Conclusions and outlook
  • Acknowledgements
  • References.