|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn950689989 |
003 |
OCoLC |
005 |
20231120112111.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160526s2016 enk ob 001 0 eng d |
040 |
|
|
|a YDXCP
|b eng
|e rda
|e pn
|c YDXCP
|d N$T
|d EBLCP
|d OPELS
|d OCLCF
|d IDEBK
|d UPM
|d OTZ
|d OCLCQ
|d U3W
|d MERUC
|d D6H
|d AU@
|d OCLCQ
|d WYU
|d OL$
|d UKMGB
|d OCLCQ
|d S2H
|d OCLCO
|d REDDC
|d UX1
|d VT2
|d OCLCO
|d OCLCQ
|
015 |
|
|
|a GBB673092
|2 bnb
|
016 |
7 |
|
|a 017862841
|2 Uk
|
019 |
|
|
|a 950518644
|a 953864791
|a 1229063846
|a 1229131684
|a 1235118469
|a 1235832561
|a 1257357678
|
020 |
|
|
|a 9780128047415
|q (electronic bk.)
|
020 |
|
|
|a 0128047410
|q (electronic bk.)
|
020 |
|
|
|z 0128046090
|q (print)
|
020 |
|
|
|z 9780128046098
|q (print)
|
035 |
|
|
|a (OCoLC)950689989
|z (OCoLC)950518644
|z (OCoLC)953864791
|z (OCoLC)1229063846
|z (OCoLC)1229131684
|z (OCoLC)1235118469
|z (OCoLC)1235832561
|z (OCoLC)1257357678
|
050 |
|
4 |
|a TD477
|
072 |
|
7 |
|a TEC
|x 010000
|2 bisacsh
|
082 |
0 |
4 |
|a 628.3
|2 23
|
100 |
1 |
|
|a Gautam, Ravindra Kumar,
|e author.
|
245 |
1 |
0 |
|a Nanomaterials for wastewater remediation /
|c Ravindra Kumar Gautam, Mahesh Chandra Chattopadhyaya.
|
264 |
|
1 |
|a [Oxford, UK] :
|b Butterworth-Heinemann is an imprint of Elsevier,
|c 2016.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed July 5, 2016).
|
505 |
0 |
|
|a Machine generated contents note: 1. Nanotechnology for Water Cleanup -- 1.1. Introduction -- 1.2. Magnetic nanoparticles -- 1.3. Layered double hydroxides (LDHs) for environmental applications -- 1.4. Removal of inorganic contaminants by LDHs -- 1.5. Removal of nuclear wastes -- 1.6. Graphene-based adsorbents -- 1.7. Metal organic frameworks (MOFs) -- 1.8. Bimetallic nanoparticles -- 1.9. Conclusions -- References -- 2. Remediation Technologies for Water Cleanup: New Trends -- 2.1. Introduction -- 2.2. Remediation technologies for emerging pollutants -- 2.3. Conclusions -- References -- 3. Advanced Oxidation Process-Based Nanomaterials for the Remediation of Recalcitrant Pollutants -- 3.1. Advanced oxidation processes -- 3.2. Main advanced oxidation processes -- 3.3. Conclusions -- References -- 4. Graphene-Based Nanocomposites as Nanosorbents -- 4.1. Introduction -- 4.2. Graphene-based nanocomposites as nanosorbents -- 4.3. Graphene oxide for removal of phenol and naphthol.
|
505 |
0 |
|
|a Note continued: 4.4. Graphene oxide for removal of algal toxins -- 4.5. Graphene for removal of persistent organic pollutants -- 4.6. Conclusions -- References -- 5. Kinetics and Equilibrium Isotherm Modeling: Graphene-Based Nanomaterials for the Removal of Heavy Metals From Water -- 5.1. Introduction -- 5.2. Kinetic studies and models -- 5.3. Other kinetic models -- 5.4. Modeling of equilibrium adsorption processes -- 5.5. Thermodynamic analyses -- 5.6. Adsorption of heavy metals -- 5.7. Conclusions -- References -- 6. Sorption of Dyes on Graphene-Based Nanocomposites -- 6.1. Adsorption of dyes -- 6.2. Graphene-based magnetic nanocomposites -- 6.3. Photocatalytic degradation -- 6.4. Graphene-based carbon nanotubes composites -- 6.5. Graphene-based sulfonic magnetic nanocomposites -- 6.6. Graphene-based polymer nanocomposites -- 6.7. Graphene-based sand composites -- 6.8. Graphene-based chitosan composites -- 6.9. Conclusions -- References.
|
505 |
0 |
|
|a Note continued: 7. Functionalized Magnetic Nanoparticles: Adsorbents and Applications -- 7.1. Magnetic nanoparticles -- 7.2. Synthesis of magnetic nanoparticles -- 7.3. Magnetic nanoparticles in wastewater treatment -- 7.4. Modeling of adsorption: kinetic and isotherm models -- 7.5. Conclusions and future perspectives -- References -- 8. Layered Double Hydroxides Nanomaterials for Water Remediation -- 8.1. Introduction -- 8.2. Synthesis of layered double hydroxides -- 8.3. Potential applications of LDHs -- 8.4. Conclusions -- References -- 9. Magnetic Nanophotocatalysts for Wastewater Remediation -- 9.1. Introduction -- 9.2. Synthesis and characterization -- 9.3. Applications of magnetically recyclable nanophotocatalysts -- 9.4. Conclusions -- References -- 10. Alumina Nanoparticles and Alumina-Based Adsorbents for Wastewater Treatment -- 10.1. Introduction -- 10.2. Synthesis -- 10.3. Application -- 10.4. Conclusions -- References.
|
505 |
0 |
|
|a Note continued: 11. Bimetallic Nanomaterials for Remediation of Water and Wastewater -- 11.1. Introduction -- 11.2. Applications of bimetallic nanomaterials -- 11.3. Conclusions -- References -- 12. Desorption, Regeneration, and Reuse of Nanomaterials -- 12.1. Introduction -- 12.2. Regeneration of photocatalysts -- 12.3. Recovery of metals and regeneration of magnetic nanoparticles -- 12.4. Regeneration of graphene-based nanocomposites -- 12.5. Regeneration of nanosorbents used in dye removal -- 12.6. Desorption and regeneration of inorganic solid wastes -- 12.7. Management of spent eluents -- 12.8. Management of spent nanomaterials -- 12.9. Conclusions -- References -- 13. Nanomaterials in the Environment: Sources, Fate, Transport, and Ecotoxicology -- 13.1. Introduction -- 13.2. Release of nanomaterials into the environment -- 13.3. Titanium dioxide -- 13.4. Silicon dioxide -- 13.5. Iron oxide nanoparticles -- 13.6. Graphene-based materials and their toxicity.
|
505 |
0 |
|
|a Note continued: 13.7. Metal and semiconductor nanoparticles -- 13.8. Copper nanoparticles -- 13.9. Nickel nanoparticles -- 13.10. Silver nanoparticles -- 13.11. Magnetic nanoparticles in the environment -- 13.12. Environmental and safety concerns toward nanomaterials -- 13.13. Challenges in certain areas -- 13.14. Proposed actions to address these challenges -- 13.15. Conclusions -- References.
|
520 |
8 |
|
|a Annotation
|b This volume introduces techniques for nanoparticle formation and their benefits in environmental cleanup, as well as their recent advances and applications in wastewater treatment. The book follows a sequential approach for the treatment of wastewater, presenting state-of-the-art techniques for the characterisation and measurement of nanomaterials.
|
504 |
|
|
|a Includes bibliographical references at the end of each chapters and index.
|
650 |
|
0 |
|a Water
|x Purification.
|
650 |
|
0 |
|a Nanostructured materials.
|
650 |
|
2 |
|a Water Purification
|0 (DNLM)D018508
|
650 |
|
2 |
|a Nanostructures
|0 (DNLM)D049329
|
650 |
|
6 |
|a Eau
|x �Epuration.
|0 (CaQQLa)201-0008781
|
650 |
|
6 |
|a Nanomat�eriaux.
|0 (CaQQLa)201-0258061
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Environmental
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Nanostructured materials.
|2 fast
|0 (OCoLC)fst01032630
|
650 |
|
7 |
|a Water
|x Purification.
|2 fast
|0 (OCoLC)fst01171363
|
700 |
1 |
|
|a Chattopadhyaya, Mahesh Chandra,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Gautam, Ravindra Kumar.
|t Nanomaterials for wastewater remediation.
|d [Oxford, UK] : Butterworth-Heinemann is an imprint of Elsevier, 2016
|z 0128046090
|z 9780128046098
|w (OCoLC)944209921
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128046098
|z Texto completo
|