Cargando…

Pervasive computing : next generation platforms for intelligent data collection /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dobre, Ciprian (Editor ), Xhafa, Fatos (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Academic Press is an imprint of Elsevier, 2016.
Colección:Intelligent data centric systems.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_ocn949929640
003 OCoLC
005 20231120112109.0
006 m o d
007 cr cnu---unuuu
008 160519s2016 enk ob 001 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d UIU  |d YDXCP  |d OCLCF  |d U3W  |d D6H  |d WYU  |d LQU  |d UKMGB  |d UUM  |d S2H  |d OCLCO  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB663155  |2 bnb 
016 7 |a 017836618  |2 Uk 
019 |a 1066654673  |a 1105191027  |a 1105573562  |a 1235826773 
020 |a 9780128037027  |q (ePub ebook) 
020 |a 0128037024 
020 |z 9780128036631 
020 |z 012803663X 
035 |a (OCoLC)949929640  |z (OCoLC)1066654673  |z (OCoLC)1105191027  |z (OCoLC)1105573562  |z (OCoLC)1235826773 
050 4 |a QA76.5915 
082 0 4 |a 004  |2 23 
245 0 0 |a Pervasive computing :  |b next generation platforms for intelligent data collection /  |c edited by Ciprian Dobre and Fatos Xhafa. 
264 1 |a London, UK :  |b Academic Press is an imprint of Elsevier,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Intelligent data-centric systems: Sensor collected intelligence 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed May 19, 2016). 
505 0 |a Front Cover -- Pervasive Computing: Next Generation Platforms for Intelligent Data Collection -- Copyright -- Dedication -- Contents -- Contributors -- About the Editors -- Foreword -- Preface -- Organization of the Book -- Acknowledgments -- Part I: Automated capture of experiences with easy access -- Chapter 1: On preserving privacy in cloud computing using ToR -- 1 Introduction -- 2 Overview of cloud computing -- 2.1 Cloud Computing Reference Model -- 2.2 Privacy in the Cloud -- 2.3 Anonymity in the Cloud -- 3 An overview of ToR -- 3.1 The ToR Network -- 3.2 Connection/Circuit Setup in ToR -- 3.3 Attacks Against ToR -- 3.3.1 Denial of service attack -- 3.3.2 The timing attack -- 3.3.3 Website fingerprinting attack -- 3.4 ToR in Existing Implementations -- 4 ToR in cloud computing -- 4.1 Our Experiments -- 4.1.1 ToR with DropBox -- 4.1.2 ToR with FaceBook -- 4.1.3 ToR with Youtube -- 5 Conclusion -- Acronyms -- Glossary -- References -- Chapter 2: Self-adaptive overlay networks -- 1 Introduction -- 2 Background/literature review/context -- 2.1 Unstructured Peer-to-Peer -- 2.1.1 Freenet 2001 -- Joining, leaving, and lookup in Freenet overlay -- 2.1.2 Gnutella 2002 -- Joining, leaving, and lookup in Gnutella overlay -- 2.1.3 FastTrack 2006 -- Joining, leaving, and lookup in FastTrack overlay -- 2.1.4 Other unstructured peer-to-peer overlays -- BitTorrent 2003 -- Gia 2004 -- UMM 2010 -- 2.2 Structured Peer-to-Peer -- 2.2.1 CAN 2001 -- Joining in CAN overlays -- Leaving in CAN overlays -- Lookup in CAN overlays -- Applications of CAN overlays -- 2.2.2 Kademlia 2002 -- Joining and leaving in Kademlia overlays -- Lookup in Kademlia overlays -- Applications of Kademlia overlays -- 2.2.3 Chord 2003 -- Joining and leaving Chord P2P overlays -- Lookup in Chord overlays -- Applications of Chord overlays -- 2.2.4 Other structured P2P overlays. 
505 8 |a Viceroy 2002 -- SkipNet 2003 -- Coral 2004 -- Tapestry 2004 -- Cycloid 2006 -- HyPeer 2011 -- 3 Self-adaptive overlays -- 3.1 Bio-Inspired P2P Overlays -- 3.1.1 Self-Chord 2010 -- 3.1.2 P2PBA 2011 -- 3.1.3 Self-CAN 2012 -- 3.1.4 Honeycomb 2014 -- 3.1.5 SPIDER 2015 -- 3.2 Multi-Layer Peer-to-Peer -- 4 Hybrid peer-to-peer systems -- 4.1 JXTA -- 4.2 MOPAR -- 5 Discussion and conclusions -- Acronyms -- Acknowledgments -- References -- Chapter 3: Users in the urban sensing process: Challenges and research opportunities -- 1 Introduction -- 2 Participatory sensor networks -- 2.1 What is a Participatory Sensor Network? -- 2.2 The Functioning of PSN -- 2.3 Examples of PSNs -- 3 Properties of PSN -- 3.1 Data Description -- 3.2 Network Coverage -- 3.3 Sensing Interval -- 3.4 Routines and Data Sharing -- 3.5 Node Behavior -- 3.6 Discussion -- 4 Working with PSN data -- 4.1 Data Collection -- 4.1.1 APIs -- 4.1.2 Web crawler -- 4.1.3 Applications -- 4.2 Understanding City Dynamics -- 4.3 Social, Economic, and Cultural Patterns -- 4.4 Final Considerations -- 5 Challenges and opportunities -- 5.1 Sensing Layers -- 5.1.1 Preliminaries -- 5.1.2 Framework for the integration of multiple layers -- 5.1.3 Challenges and opportunities -- 5.2 Temporal Dynamics of PSNs -- 5.2.1 Preliminaries -- 5.2.2 Challenges and opportunities -- 5.3 Incentive Mechanism for PSN -- 5.3.1 Preliminaries -- 5.3.2 User cooperation -- 5.3.3 Reward-based incentive mechanisms -- 5.3.4 Gamification-based incentive mechanism -- 5.3.5 Challenges and opportunities -- 5.4 Quality of Data From PSN -- 5.4.1 Preliminaries -- 5.4.2 Challenges -- 5.4.3 Opportunities -- 5.5 PSNs and Vehicular Networks -- 5.5.1 Preliminaries -- 5.5.2 Monitoring events -- 5.5.3 Routines and behaviors -- 5.5.4 Traffic management -- 5.5.5 Challenges and opportunities -- 5.6 Other Challenges and Opportunities Related to PSNs. 
505 8 |a 5.6.1 Data sampling -- 5.6.2 Large volume of data -- 5.6.3 Privacy -- 6 Conclusion -- Acronyms -- Glossary -- References -- Chapter 4: Integration in the Internet of Things: A semantic middleware approach to seamless integration of heterogeneous t ... -- 1 Introduction -- 2 Motivating scenario -- 3 Current approaches to integration in IoT -- 3.1 Understanding the Integration Issues -- 3.1.1 To connect: The connection problem -- 3.1.2 To communicate: The understanding problem -- 3.1.3 To range: The scalability problem -- 3.1.4 To configure: The adaptation problem -- 3.2 Approaches for Integration: The History -- 3.3 Frameworks Based on Publish/Subscribe -- 3.3.1 Challenges and open issues -- 4 Design of an integration layer for P/S frameworks -- 4.1 Integration Layer -- 4.2 Adapters Design -- 4.2.1 Structure dimension -- 4.2.2 Interaction dimension -- 4.2.3 Behavior dimension -- 4.3 Adapters Implementation and Deployment -- 4.3.1 Boundary layer -- 4.3.2 Control layer -- 4.3.3 Entity layer -- 5 Example of adapters implementation and system deployment -- 5.1 Publisher Adapter -- 5.2 Subscriber Adapter -- 5.3 Run-Time Modifications -- 6 Conclusions and Future Work -- Acronyms -- Glossary -- Acknowledgments -- References -- Part II: Context-aware/sensitive interactions and applications -- Chapter 5: A context-aware system for efficient peer-to-peer content provision -- 1 Introduction -- 2 Related work and research motivation -- 2.1 Effective Content Distribution Mechanisms -- 2.2 Service Publication/Management -- 2.3 Peer-to-Peer Network Instantiation Inside the Home Box -- 2.4 Delivery Manager -- 2.5 Publishing Manager -- 2.6 Discovery Manager -- 2.7 Streaming Gateway -- 2.8 HTTP Gateway -- 2.9 Conclusion -- Acronyms -- Glossary -- Acknowledgments -- References -- Chapter 6: Transparent distributed data management in large scale distributed systems. 
505 8 |a 1 Introduction and overview -- 1.1 Main Objectives -- 1.2 Contributions -- 2 Mutual Exclusion -- 2.1 Distributed Mutual Exclusion Algorithms -- 2.2 The Naimi and T�rhel Algorithm -- 2.3 Simultaneous Requests -- 3 Algorithm for Exclusive Locks With Mobile Processes (ELMP) -- 3.1 The Data Structure -- 3.2 Atomic Operations -- 3.3 Connecting to the System -- 3.4 Balancing Strategies -- 3.5 Balancing Following New Insertions -- 3.6 Balancing Following a Token Request -- 3.7 Balancing Following Departure -- 3.8 The Proof of the ELMP Algorithm -- 4 Read Write Locks for Mobile Processes (RW-LMP) Algorithm -- 4.1 Handling Requests in the Linked-List -- 4.2 Entering the Critical Section -- 4.3 Leaving the Critical Section -- 4.4 Leaving the System -- 4.5 The Proof of the RW-LMP Algorithm -- 5 Multi-Level Architecture and Data Abstraction -- 5.1 The Basic Model of the DHO API -- 5.1.1 DHO cooperation model -- 5.1.2 The path of a DHO request -- 5.2 Modeling of DHO Life Cycle -- 5.3 Observed Delays -- 5.4 Connection and Disconnection at Application Level -- 5.5 Deviation From the Normal DHO Cycle -- 6 Experimental Results -- 6.1 DHO Cycle Evaluation With Asynchronous Locks -- 6.2 Shared and Exclusive Requests -- 6.3 DHO Cycle Evaluation With Mobility of Peers -- 7 Discussion -- 8 Conclusion -- Acronyms -- Glossary -- References -- Chapter 7: Converged information-centric spaces based on wireless data hubs -- 1 Introduction -- 2 Connectivity and congestion in dense wireless spaces -- 2.1 Common Connectivity Problem -- 2.2 Example Devices and Operation Modes -- 2.3 Literature on Wireless Interference and Congestion -- 2.4 Time Slot Division Method -- 3 Group connect and wireless traffic offload -- 3.1 Two Wireless Stacks -- 3.2 Conventional Versus P2P WiFi Designs -- 3.3 Basic Idea of Group Connect -- 3.4 Traffic Offload Function of Group Connect. 
505 8 |a 4 Wireless data hub -- 4.1 Parameters for a Converged Information-Centric Space -- 4.2 Wireless Data Hub -- 4.3 WDH in the Center of a Social Wireless Network -- 4.4 Maintenance in the No-Wires WDH Space -- 5 Modeling and performance analysis -- 5.1 Mobility Traces and Throughput Datasets -- 5.2 Group Connect and WDH Deployment Models -- 5.3 Group Connect Versus 4G Infrastructure -- 5.4 Wireless Data Hub Versus 3G/LTE Spaces -- 6 Summary -- Acronyms -- Glossary -- References -- Chapter 8: Data fusion for orientation sensing in wireless body area sensor networks using smart phones -- 1 Introduction -- 2 WBASN and E-Health Systems -- 2.1 Data Aggregation and Data Fusion -- 2.1.1 Data fusion algorithms -- 2.2 Smart Phones for e-Health Monitoring -- 3 Orientation sensing -- 3.1 Sensor Data Fusion: A Layered Approach -- 4 Orientation approximation -- 4.1 Gyroscope Accelerometer Integration -- 4.2 Complementary Filtering -- 4.3 Kalman Filter -- 5 Experimental setup -- 6 Kalman and complementary filtering -- 6.1 On Test Basis -- 6.2 On Real-Time Data -- 6.3 Comparison -- 7 Discussion -- 8 Conclusion and future works -- Acronyms -- Glossary -- References -- Part III: Ubiquitous services independent of devices/platforms -- Chapter 9: Reuse of data from smart medical devices for quality control and evidence-based medicine -- 1 Introduction -- 2 State of the art of medical technology -- 3 Obstacles to the adoption of smart medical devices in the practice -- 4 Smart medical devices as complex cyber-physical systems -- 5 Interdisciplinary approach versus mentality mismatch -- 6 Necessity of postmarket surveillance -- 7 Primary and secondary use of smart medical devices data -- 7.1 Data for Health Support -- 7.1.1 Data characteristics -- 7.1.2 Data management -- 7.2 Data for Quality Assurance -- 7.2.1 Data characteristics -- 7.2.2 Data management. 
504 |a Includes bibliographical references and index. 
650 0 |a Ubiquitous computing. 
650 6 |a Informatique omnipr�esente.  |0 (CaQQLa)201-0371302 
650 7 |a Ubiquitous computing  |2 fast  |0 (OCoLC)fst01160283 
700 1 |a Dobre, Ciprian,  |e editor. 
700 1 |a Xhafa, Fatos,  |e editor. 
776 0 8 |i Print version :  |z 9780128036631 
830 0 |a Intelligent data centric systems. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128036631  |z Texto completo