Cargando…

Organic nanoreactors : from molecular to supramolecular organic compounds /

Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds provides a unique overview of synthetic, porous organic compounds containing a cavity which can encapsulate one or more guest(s). Confined space within a nanoreactor can isolate the guest(s) from the bulk and effectively influe...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sadjadi, Samahe (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2016]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Chapter 1
  • Introduction to Nanoreactors
  • 1
  • Approaches to artificial enzymes
  • 2
  • Nanoreactors
  • 2.1
  • Nanoreactor Definition
  • 2.2
  • Encapsulation Effects
  • 2.3
  • Reaction Kinetics Inside Nanoreactors
  • 2.4
  • Product Inhibition
  • 2.5
  • Nanoreactor Classification
  • 2.5.1
  • Natural or Synthetic Nanoreactors
  • 2.5.2
  • Biological Nanoreactors
  • 2.5.3
  • Self-Assembled Nanoreactors
  • 3
  • Nanoreactor potential applications
  • 3.1
  • Catalysis
  • 3.2
  • Protection and Stabilization.
  • 3.3
  • Templating and Stabilizing of Nanomaterials
  • 3.4
  • Polymer Science
  • 3.5
  • Development of Nanomedicines
  • 3.6
  • Sensors
  • 4
  • Conclusions
  • References
  • Chapter 2
  • Cyclodextrins as Porous Material for Catalysis
  • 1
  • Cyclodextrins: a brief overview
  • 1.1
  • Structure and Supramolecular Properties
  • 1.2
  • CD-Based Polymers
  • 1.2.1
  • Cross-Linked CD-Based Polymers
  • 1.2.2
  • Linear CD-Based Polymers
  • 1.3
  • Applications of CDs
  • 2
  • CD-based polymers as mass-transfer promoters
  • 2.1
  • Ester Hydrolysis
  • 2.2
  • Nucleophilic Substitution
  • 2.3
  • Oxidation.
  • 2.4
  • Aldol Condensation
  • 2.5
  • Organometallic Catalysis
  • 3
  • Imprinted CD-based polymers for catalysis
  • 3.1
  • Wacker Oxidation
  • 3.2
  • Oxidative Coupling
  • 3.2.1
  • Naphthol Derivatives Homocoupling
  • 4
  • CD-based nanosponges
  • 5
  • Conclusions
  • References
  • Chapter 3
  • The Use of Cucurbit[n]urils as Organic Nanoreactors
  • 1
  • Introduction
  • 2
  • Physical properties of cucurbit[n]urils
  • 3
  • Host properties of cucurbit[n]urils
  • 3.1
  • Cationic Guests
  • 3.2
  • Neutral Guests
  • 3.3
  • Other Guests
  • 4
  • Effects of cucurbit[n]uril hosts on guest physical and structural properties.
  • 4.1
  • Effects of CB[n] Hosts on Guest Solubility
  • 4.2
  • Effects of CB[n] Hosts on Guest Spectroscopic Properties
  • 4.3
  • Effects of CB[n] Hosts on Guest Structure and Isomerization
  • 4.4
  • Effects of CB[n] Hosts on Guest Aggregation
  • 5
  • Effects of Cucurbit[n]urils on guest reactivity and chemical properties
  • 5.1
  • CB[n] Nanoreactor Control of Guest Acidity
  • 5.2
  • CB[n] Nanoreactor Control of Guest Electrochemical Properties
  • 5.3
  • CB[n] Nanoreactors for Enhanced Reactant Solubility and Stability
  • 5.4
  • CB[n] Nanoreactors for Reactant Geometry and Stereochemistry Control.
  • 5.5
  • CB[n] Nanoreactors for Reaction Templating
  • 5.6
  • CB[n] Nanoreactors for Reaction Catalysis
  • 6
  • Conclusions
  • References
  • Chapter 4
  • Systems Based on Calixarenes as the Basis for the Creation of Catalysts and Nanocontainers
  • 1
  • Introduction
  • 2
  • Synthesis and structure of calixarenes
  • 2.1
  • Calixarenes and Thiacalixarenes
  • 2.2
  • Calix[4]resorcinarenes and Pyrogallolarenes
  • 3
  • Macromolecular catalysts based on macrocyclic receptors
  • 4
  • Supramolecular catalysis by calixarenes
  • 5
  • Supramolecular catalysis by metal complexes based on calixarenes.
  • 6
  • Supramolecular systems for controlled binding/isolation of organic molecules and biosubstrates.