Introduction to EEG- and speech-based emotion recognition /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Academic Press is an imprint of Elsevier,
[2016]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- INTRODUCTION TO EEG- AND SPEECH-BASED EMOTION RECOGNITION
- INTRODUCTION TO EEG- AND SPEECH-BASED EMOTION RECOGNITION
- Copyright
- Contents
- Preface
- Acknowledgments
- 1
- Introduction to Emotion, Electroencephalography, and Speech Processing
- 1.1 INTRODUCTION
- 1.2 BRAIN PHYSIOLOGY
- 1.2.1 Major Brain Areas
- The Brain Stem
- The Midbrain
- The Limbic System
- The Cerebral Cortex
- The Basal Ganglia
- The Cerebellum
- The Cerebrum
- 1.3 LOBES OF THE BRAIN AND THEIR FUNCTIONS
- 1.3.1 The Frontal Lobe
- 1.3.2 The Parietal Lobe
- 1.3.3 The Temporal Lobe
- 1.3.4 The Occipital Lobe
- 1.4 ELECTROENCEPHALOGRAPHY
- 1.5 HUMAN AUDITORY SYSTEM
- 1.5.1 Speech Production Mechanism
- 1.6 SPEECH PROCESSING
- 1.6.1 Speech Emotion Recognition
- 1.7 ORGANIZATION OF THE BOOK
- 1.8 CONCLUSION
- References
- 2
- Technological Basics of EEG Recording and Operation of Apparatus
- 2.1 INTRODUCTION TO ELECTROENCEPHALOGRAPHY
- 2.1.1 Brain Waves
- 2.1.2 Applications of EEG
- 2.2 MODERN EEG EQUIPMENT
- 2.2.1 Wired EEG Systems
- 2.2.1.1 Merits
- 2.2.1.2 Demerits
- 2.2.2 Wireless EEG Systems
- 2.2.2.1 Merits
- 2.2.2.2 Demerits
- 2.2.3 Evoked Potentials
- 2.3 THE EEG 10/20 ELECTRODES PLACEMENT SYSTEM
- 2.4 EEG ACQUISITION TOOL
- 2.4.1 EEG Acquire Software
- 2.4.2 EEG Analysis Software
- 2.5 ARTIFACTS
- 2.5.1 Eye Blinks
- 2.5.2 Eye Movement
- 2.5.3 Muscular Artifacts
- 2.5.4 Electrode Artifacts
- 2.6 SPEECH ACQUISITION AND PROCESSING
- 2.6.1 Applications of Speech Recognition22
- 2.6.2 Acquisition Setup
- 2.7 COMPUTERIZED SPEECH LABORATORY
- 2.7.1 Key Features of CSL
- 2.7.2 Facilities Available in CSL
- 2.7.2.1 Record and Speak Facilities
- 2.7.2.2 Analytical Tools
- 2.7.2.3 Other Special Features
- 2.8 CONCLUSION
- References
- 3
- Technical Aspects of Brain Rhythms and Speech Parameters.
- 3.1 INTRODUCTION TO BRAIN-WAVE FREQUENCIES
- 3.1.1 Gamma Waves
- 3.1.2 Beta Waves
- 3.1.3 Alpha Waves
- 3.1.4 Theta Waves
- 3.1.5 Delta Waves
- 3.2 SPEECH PROSODIC FEATURES
- 3.2.1 Acoustic Features for Emotions
- 3.2.1.1 Prosody-Related Signal Measures
- 3.2.1.1.1 ENERGY
- 3.2.1.1.2 PITCH
- 3.2.1.1.3 FORMANT
- 3.2.1.1.4 INTENSITY
- 3.2.1.1.5 LOUDNESS
- 3.2.1.1.6 DURATION
- 3.2.1.1.7 SAMPLING RATE
- 3.2.1.2 Spectral Characteristics Measures
- 3.2.1.2.1 MEL-FREQUENCY CEPSTRAL COEFFICIENTS
- 3.2.1.2.2 MEL FILTER BANK ENERGY BASED SLOPE FEATURES
- 3.2.1.3 Voice Quality-related Measures
- 3.2.1.3.1 JITTER
- 3.2.1.3.2 SHIMMER
- 3.2.1.3.3 HARMONIC TO NOISE RATIO
- 3.3 SIGNAL PROCESSING ALGORITHMS
- 3.3.1 Preprocessing Algorithms
- 3.3.1.1 Common Spatial Patterns (CSP)
- 3.3.1.2 Independent Component Analysis
- 3.3.2 Feature Extraction
- 3.3.2.1 Principal Components Analysis
- 3.3.2.2 Mel Frequency Cepstral Coefficients for Speech Feature Extraction
- 3.3.3 Feature Classification
- 3.3.3.1 Linear Discriminative Analysis
- 3.3.3.2 Support Vector Machine
- 3.3.3.2.1 LINEAR CLASSIFICATION
- 3.3.3.2.2 NON-LINEAR CLASSIFICATION
- 3.4 CONCLUSION
- References
- 4
- Time and Frequency Analysis
- 4.1 INTRODUCTION
- 4.2 FOURIER TRANSFORMATION
- 4.2.1 Theoretical Background
- 4.2.2 Aliasing
- 4.3 GABOR TRANSFORMATION (SHORT-TIME FOURIER TRANSFORMATION)5-7
- 4.3.1 Theoretical Considerations
- 4.3.2 Limitations of Gabor Transformation5,6,9
- 4.4 SHORT-TIME FOURIER TRANSFORMATION
- 4.4.1 Window Size for Short-Term Spectral Analysis10,11
- 4.5 WAVELET TRANSFORMATION
- 4.5.1 Theoretical Background
- 4.5.1.1 Continuous Wavelet Transformation
- 4.5.1.2 Dyadic Wavelet Transformation
- 4.5.1.3 Multiresolution Analysis
- 4.5.1.4 Discrete Wavelet (Haar) Transformation
- 4.5.1.5 The Morlet Wavelet.
- 4.6 TIME DOMAIN VERSUS FREQUENCY DOMAIN ANALYSIS
- 4.7 EXAMPLES
- 4.8 CONCLUSION
- References
- 5
- Emotion Recognition
- 5.1 INTRODUCTION
- 5.2 MODALITIES FOR EMOTION RECOGNITION SYSTEMS
- 5.2.1 Physiological
- 5.2.1.1 Facial Expression
- 5.2.1.1.1 FEATURES FOR FACIAL EXPRESSIONS
- 5.2.1.1.2 FACIAL ACTION CODING SYSTEM
- 5.2.1.1.3 AVAILABLE DATABASES OF FACIAL EXPRESSIONS
- 5.2.1.1.3.1 ENTERFACE05
- 5.2.1.1.3.2 COHN-KANADE AU-CODED EXPRESSION DATABASE
- 5.2.1.1.3.3 MMI FACIAL EXPRESSION DATABASE
- 5.2.1.1.3.4 JAPANESE FEMALE FACIAL EXPRESSION (JAFFE) DATABASE
- 5.2.1.1.3.5 RADBOUD FACES DATABASE
- 5.2.1.2 Body Movement/Gesture
- 5.2.1.2.1 FEATURES FOR BODY MOVEMENT/GESTURE
- 5.2.1.2.2 SOFTWARE USED FOR BODY GESTURE/MOVEMENTS
- 5.2.1.2.2.1 CUBE26
- 5.2.2 Behavioral
- 5.2.2.1 Speech
- 5.2.2.1.1 FEATURES FOR SPEECH SIGNALS
- 5.2.2.1.2 FEATURES FOR SPEECH
- 5.2.2.2 Text
- 5.2.2.2.1 FEATURES EXTRACTED FROM TEXT
- 5.2.2.2.1.1 GRAPHICS IMAGES (GI) FEATURES
- 5.2.2.2.1.2 WORDNET-AFFECT FEATURES
- 5.2.2.2.1.3 OTHER FEATURES
- 5.2.3 Brain Signals and Imaging
- 5.2.3.1 Positron Emission Tomography
- 5.2.3.2 Magnetic Resonance Imaging
- 5.2.3.3 Magnetoencephalography
- 5.2.3.4 Functional Magnetic Resonance Imaging
- 5.2.3.5 NIRS
- 5.2.3.6 Electroencephalography
- 5.2.3.6.1 ROUTINE EEG
- 5.2.3.6.2 SLEEP EEG
- 5.2.3.6.3 AMBULATORY EEG
- 5.2.3.6.4 VIDEO TELEMETRY
- 5.2.3.7 Features for EEG
- 5.2.3.8 Available Online Database for EEG With Respect to Emotions
- 5.2.3.8.1 DATASET FOR EMOTION ANALYSIS USING EEG, PHYSIOLOGICAL, AND VIDEO SIGNALS (DEAP)
- 5.3 CONCLUSION
- References
- 6
- Multimodal Emotion Recognition
- 6.1 INTRODUCTION
- 6.1.1 The Need for Multimodal
- 6.2 MODELS AND THEORIES OF EMOTION
- 6.2.1 Circumflex Model
- 6.2.2 Vector Model
- 6.2.3 Positive Activation-Negative Activation Model.
- 6.2.4 Plutchik's Model
- 6.3 PLEASURE, AROUSAL, AND DOMINANCE EMOTIONAL STATE MODEL
- 6.4 EARLIER EFFORTS IN MULTIMODAL EMOTION RECOGNITION SYSTEMS
- 6.5 ONLINE DATABASES OF MULTIMODAL EMOTIONS
- 6.5.1 Surrey Audio-Visual Expressed Emotion Database
- 6.5.2 Dataset for Emotion Analysis Using EEG, Physiological, and Video Signals
- 6.5.3 HUMAINE Database
- 6.5.4 Interactive Emotional Dyadic Motion Capture Database
- 6.6 ADVANTAGES OF MULTIMODAL APPROACH
- 6.7 CHALLENGES FOR MULTIMODAL AFFECT RECOGNITION SYSTEMS
- 6.8 CONCLUSION
- References
- 7
- Proposed EEG/Speech-Based Emotion Recognition System: A Case Study
- 7.1 INTRODUCTION
- 7.2 EXPERIMENTAL DATABASE
- 7.3 EXPERIMENTAL ANALYSIS FOR EEG IMAGES
- 7.3.1 Active Electrodes From EEG Images for Relaxed, Happy, and Sad Emotional States
- 7.3.2 Active Regions From EEG Images for Relaxed, Happy, and Sad Emotional States
- 7.3.3 EEG Images for Relaxed, Happy, and Sad Emotional States
- 7.3.4 Active Region Size From EEG Images for Relaxed, Happy, and Sad Emotional States
- 7.4 ANALYSIS OF FEATURE EXTRACTION FROM EEG IMAGES
- 7.5 EXPERIMENTAL ANALYSIS FOR SPEECH SIGNALS
- 7.6 CORRELATION OF EEG IMAGES AND SPEECH SIGNALS
- 7.7 CLASSIFICATION USING LINEAR DISCRIMINATE ANALYSIS
- 7.8 CONCLUSION
- References
- 8
- Brain-Computer Interface Systems and Their Applications
- 8.1 INTRODUCTION
- 8.2 WORKING OF BCI SYSTEMS
- 8.3 TYPES OF BCI
- 8.3.1 Invasive BCI
- Advantages
- Disadvantages
- 8.3.2 Partially Invasive BCI
- Advantages
- Disadvantages
- 8.3.3 Noninvasive BCI
- Advantages
- Disadvantages
- 8.4 BCI APPLICATIONS
- 8.4.1 Prosthetic Control
- 8.4.2 BCI in Fatigue and Driver Alertness
- 8.4.3 The P300 Speller18
- 8.4.3.1 Characteristics of P300
- 8.4.3.2 Applications of P300
- 8.4.4 Brain Fingerprinting
- 8.4.4.1 Brain Fingerprinting Applications.
- 8.5 CHALLENGES FOR BCI
- 8.6 CONCLUSION
- References
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- Back Cover.