Cargando…

Solar chimney power plant generating technology /

Solar Chimney Power Plant Generating Technology presents the latest advanced solar chimney power generating technologies to help engineers acquire a comprehensive understanding of the fundamental theories, technologies, and applications of solar chimney power generating systems. The book includes co...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ming, Tingzhen (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, an imprint of Elsevier, [2016]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: ch. 1 Introduction / Tao Pan
  • 1.1. Energy Background
  • 1.1.1. The Energy Issue and the Status Quo
  • 1.1.2. China's Energy Policy and Prospect
  • 1.1.3. Solar Power Generating Technologies and the Status Quo
  • 1.2. Solar Chimney Power Plant System
  • 1.2.1. The Appearance of a Solar Chimney Power Plant System
  • 1.2.2. Advantages of SCPPS
  • 1.2.3. Weaknesses of SCPPS
  • 1.3. Research Progress
  • 1.3.1. Experiments and Prototypes
  • 1.3.2. Theory Research
  • 1.3.3. Economic and Ecological Theory and Feasibility Studies
  • 1.3.4. Potential Application of SCPPS
  • 1.4. Research Contents of this Book
  • References
  • ch. 2 Thermodynamic Fundamentals / Yuan Pan
  • 2.1. Introduction
  • 2.2. Thermodynamic Cycle
  • 2.3. Thermal Efficiency
  • 2.4. Results and Analysis
  • 2.4.1.Computation Results for the Spanish Prototype
  • 2.4.2.Computation Results for Commercial SCPPSs
  • 2.5. Effect of Various Parameters
  • 2.5.1. Influence of Turbine Efficiency.
  • Note continued: 2.5.2. Influence of Chimney Height and Diameter
  • 2.5.3. Influence of Collector Diameter
  • 2.5.4. The Influence of the Solar Radiation
  • 2.5.5. The Influence of Ambient Temperature
  • 2.6. Conclusions
  • Nomenclature
  • Subscript
  • Greek Symbols
  • References
  • ch. 3 Helio-Aero-Gravity (HAG) Effect of SUPPS / Guoliang Xu
  • 3.1. Introduction
  • 3.2. Relative Static Pressure
  • 3.3. Driving Force
  • 3.4. Power Output and Efficiency
  • 3.5. Results and Discussions
  • 3.6. Conclusions
  • Nomenclature
  • References
  • ch. 4 Fluid Flow and Heat Transfer of Solar Chimney Power Plant / Cheng Zhou
  • 4.1. Introduction
  • 4.2. Theoretical Models
  • 4.2.1. Physics Model
  • 4.2.2. Mathematical Model
  • 4.2.3. Boundary Conditions and Solution Method
  • 4.3. Results and Discussion
  • 4.4. Helical Heat-Collecting Solar Chimney Power Plant System
  • 4.5. Mathematical and Physical Model
  • 4.5.1. Physical Model
  • 4.5.2. Mathematical Model.
  • Note continued: 4.5.3. Solving Determinant Condition and Solution
  • 4.6. Validition
  • 4.7.Computation Results and Analysis
  • 4.7.1.Comparison on Flow and Heat Transfer Characteristics
  • 4.7.2.Comparison of Output Power for the Two Type of Models
  • 4.7.3.Comparison of Different Helical-Wall SC Systems
  • 4.7.4. Contrast on Collector's Initial Investment
  • 4.8. Conclusion
  • Nomenclature
  • Greek Symbols
  • Subscript
  • References
  • ch. 5 Design and Simulation Method for SUPPS Turbines / Yuan Pan
  • 5.1. Introduction
  • 5.2. Numerical Models
  • 5.3. Mathematical Models
  • 5.3.1. In the Collector and Chimney Regions
  • 5.3.2. In the Turbine Region
  • 5.4. Near-Wall Treatments for Turbulent Flows
  • 5.5. Numerical Simulation Method
  • 5.6. Results and Discussions
  • 5.6.1. Validity of the Method for the Spanish Prototype
  • 5.6.2. Characteristic of 3-Blade Turbine for the Spanish Prototype
  • 5.6.3. Results for MW-Graded Solar Chimney
  • 5.7. Conclusions
  • References.
  • Note continued: ch. 6 Energy Storage of Solar Chimney / Xiangfei Yu
  • 6.1. Introduction
  • 6.2. Numerical Models
  • 6.2.1. System Description
  • 6.2.2. Theoretical Modeling
  • 6.2.3. Boundary Conditions and Initial Conditions
  • 6.2.4. Solution Method
  • 6.3. Reliability of the Simulation Method
  • 6.4. Results and Discussion
  • 6.5. Conclusions
  • Nomenclature
  • Greek Symbols
  • Subscript
  • References
  • ch. 7 The Influence of Ambient Crosswind on the Performance of Solar Updraft Power Plant System / Yuan Pan
  • 7.1. Introduction
  • 7.2. Model Description
  • 7.2.1. Geometric Model
  • 7.2.2. Mathematical Model
  • 7.2.3. Boundary Conditions
  • 7.2.4. Meshing Skills
  • 7.2.5.Computational Procedure
  • 7.2.6. Selection of Ambient Geometrical Dimensions
  • 7.3. Results and Discussion
  • 7.3.1.Comparison of Flow Performances
  • 7.3.2.Comparison of Relative Static Pressure Contours
  • 7.3.3.Comparison of Temperature Contours.
  • Note continued: 7.3.4.Comparison of System Temperature Increase, Driving Force, and Updraft Velocity
  • 7.3.5. Influence of Crosswind With Turbine Pressure Drop
  • 7.3.6. Main Findings
  • 7.4. SC Model with Blockage
  • 7.5. Results and Discussion
  • 7.5.1.Comparison of Flow Performances
  • 7.5.2.Comparison of Relative Static Pressure Contours
  • 7.5.3. Flow Characteristics Near the Collector Inlet
  • 7.5.4.Comparison of System Temperature Increase and Driving Force
  • 7.5.5.Comparison of System Output Power
  • 7.5.6. Main Findings
  • Nomenclature
  • Subscripts
  • References
  • ch. 8 Experimental Investigation of a Solar Chimney Prototype / Zhou Zhou
  • 8.1. Introduction
  • 8.2. Experimental Setup
  • 8.3. Disposal of Measurement Points
  • 8.4. Results and Discussion
  • 8.4.1. Variations of Temperature with Time
  • 8.4.2. Variations of Air Temperature and Velocity in the Chimney
  • 8.4.3. Temperature Distributions of the System
  • 8.5. Conclusions
  • References.
  • Note continued: ch. 9 Research Prospects / Zhengtong Li
  • 9.1. Thermodynamic Theory for the Large-Scale SCPP
  • 9.2. External Fluid Flow and Heat Transfer in Large-Scale Channels
  • 9.3. Turbine Running Theory for the Large-Scale SCPPS
  • 9.4. The Impacts of Environmental Factors on of Large-Scale SCPPS
  • 9.5. New-Type Large-Scale SCPPS.