Solar chimney power plant generating technology /
Solar Chimney Power Plant Generating Technology presents the latest advanced solar chimney power generating technologies to help engineers acquire a comprehensive understanding of the fundamental theories, technologies, and applications of solar chimney power generating systems. The book includes co...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press, an imprint of Elsevier,
[2016]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction / Tao Pan
- 1.1. Energy Background
- 1.1.1. The Energy Issue and the Status Quo
- 1.1.2. China's Energy Policy and Prospect
- 1.1.3. Solar Power Generating Technologies and the Status Quo
- 1.2. Solar Chimney Power Plant System
- 1.2.1. The Appearance of a Solar Chimney Power Plant System
- 1.2.2. Advantages of SCPPS
- 1.2.3. Weaknesses of SCPPS
- 1.3. Research Progress
- 1.3.1. Experiments and Prototypes
- 1.3.2. Theory Research
- 1.3.3. Economic and Ecological Theory and Feasibility Studies
- 1.3.4. Potential Application of SCPPS
- 1.4. Research Contents of this Book
- References
- ch. 2 Thermodynamic Fundamentals / Yuan Pan
- 2.1. Introduction
- 2.2. Thermodynamic Cycle
- 2.3. Thermal Efficiency
- 2.4. Results and Analysis
- 2.4.1.Computation Results for the Spanish Prototype
- 2.4.2.Computation Results for Commercial SCPPSs
- 2.5. Effect of Various Parameters
- 2.5.1. Influence of Turbine Efficiency.
- Note continued: 2.5.2. Influence of Chimney Height and Diameter
- 2.5.3. Influence of Collector Diameter
- 2.5.4. The Influence of the Solar Radiation
- 2.5.5. The Influence of Ambient Temperature
- 2.6. Conclusions
- Nomenclature
- Subscript
- Greek Symbols
- References
- ch. 3 Helio-Aero-Gravity (HAG) Effect of SUPPS / Guoliang Xu
- 3.1. Introduction
- 3.2. Relative Static Pressure
- 3.3. Driving Force
- 3.4. Power Output and Efficiency
- 3.5. Results and Discussions
- 3.6. Conclusions
- Nomenclature
- References
- ch. 4 Fluid Flow and Heat Transfer of Solar Chimney Power Plant / Cheng Zhou
- 4.1. Introduction
- 4.2. Theoretical Models
- 4.2.1. Physics Model
- 4.2.2. Mathematical Model
- 4.2.3. Boundary Conditions and Solution Method
- 4.3. Results and Discussion
- 4.4. Helical Heat-Collecting Solar Chimney Power Plant System
- 4.5. Mathematical and Physical Model
- 4.5.1. Physical Model
- 4.5.2. Mathematical Model.
- Note continued: 4.5.3. Solving Determinant Condition and Solution
- 4.6. Validition
- 4.7.Computation Results and Analysis
- 4.7.1.Comparison on Flow and Heat Transfer Characteristics
- 4.7.2.Comparison of Output Power for the Two Type of Models
- 4.7.3.Comparison of Different Helical-Wall SC Systems
- 4.7.4. Contrast on Collector's Initial Investment
- 4.8. Conclusion
- Nomenclature
- Greek Symbols
- Subscript
- References
- ch. 5 Design and Simulation Method for SUPPS Turbines / Yuan Pan
- 5.1. Introduction
- 5.2. Numerical Models
- 5.3. Mathematical Models
- 5.3.1. In the Collector and Chimney Regions
- 5.3.2. In the Turbine Region
- 5.4. Near-Wall Treatments for Turbulent Flows
- 5.5. Numerical Simulation Method
- 5.6. Results and Discussions
- 5.6.1. Validity of the Method for the Spanish Prototype
- 5.6.2. Characteristic of 3-Blade Turbine for the Spanish Prototype
- 5.6.3. Results for MW-Graded Solar Chimney
- 5.7. Conclusions
- References.
- Note continued: ch. 6 Energy Storage of Solar Chimney / Xiangfei Yu
- 6.1. Introduction
- 6.2. Numerical Models
- 6.2.1. System Description
- 6.2.2. Theoretical Modeling
- 6.2.3. Boundary Conditions and Initial Conditions
- 6.2.4. Solution Method
- 6.3. Reliability of the Simulation Method
- 6.4. Results and Discussion
- 6.5. Conclusions
- Nomenclature
- Greek Symbols
- Subscript
- References
- ch. 7 The Influence of Ambient Crosswind on the Performance of Solar Updraft Power Plant System / Yuan Pan
- 7.1. Introduction
- 7.2. Model Description
- 7.2.1. Geometric Model
- 7.2.2. Mathematical Model
- 7.2.3. Boundary Conditions
- 7.2.4. Meshing Skills
- 7.2.5.Computational Procedure
- 7.2.6. Selection of Ambient Geometrical Dimensions
- 7.3. Results and Discussion
- 7.3.1.Comparison of Flow Performances
- 7.3.2.Comparison of Relative Static Pressure Contours
- 7.3.3.Comparison of Temperature Contours.
- Note continued: 7.3.4.Comparison of System Temperature Increase, Driving Force, and Updraft Velocity
- 7.3.5. Influence of Crosswind With Turbine Pressure Drop
- 7.3.6. Main Findings
- 7.4. SC Model with Blockage
- 7.5. Results and Discussion
- 7.5.1.Comparison of Flow Performances
- 7.5.2.Comparison of Relative Static Pressure Contours
- 7.5.3. Flow Characteristics Near the Collector Inlet
- 7.5.4.Comparison of System Temperature Increase and Driving Force
- 7.5.5.Comparison of System Output Power
- 7.5.6. Main Findings
- Nomenclature
- Subscripts
- References
- ch. 8 Experimental Investigation of a Solar Chimney Prototype / Zhou Zhou
- 8.1. Introduction
- 8.2. Experimental Setup
- 8.3. Disposal of Measurement Points
- 8.4. Results and Discussion
- 8.4.1. Variations of Temperature with Time
- 8.4.2. Variations of Air Temperature and Velocity in the Chimney
- 8.4.3. Temperature Distributions of the System
- 8.5. Conclusions
- References.
- Note continued: ch. 9 Research Prospects / Zhengtong Li
- 9.1. Thermodynamic Theory for the Large-Scale SCPP
- 9.2. External Fluid Flow and Heat Transfer in Large-Scale Channels
- 9.3. Turbine Running Theory for the Large-Scale SCPPS
- 9.4. The Impacts of Environmental Factors on of Large-Scale SCPPS
- 9.5. New-Type Large-Scale SCPPS.