Silicon carbide biotechnology : a biocompatible semiconductor for advanced biomedical devices and applications /
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to fur...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
2016.
|
Edición: | Second edition. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; In Memoriam; Dedication; Contents; List of contributors; Preface to Second Edition; Acknowledgments; Chapter 1
- Silicon Carbide Materials for Biomedical Applications; 1.1
- Preamble; 1.2
- Introduction to the second edition; 1.3
- Summary to the second edition; 1.4
- Introduction to the first edition; 1.5
- Silicon carbide
- materials overview; 1.6
- Silicon carbide material growth and processing; 1.6.1
- Bulk Growth; 1.6.2
- Thin-Film Growth; 1.6.3
- Amorphous Silicon Carbide Coatings; 1.6.4
- SiC Micromachining
- 1.7
- Silicon carbide as a biomedical material1.8
- Summary to the first edition; Acknowledgments; References; Chapter 2
- Cytotoxicity of 3C-SiC Investigated Through Strict Adherence to ISO 10993; 2.1
- Introduction; 2.2
- In vitro biomedical testing methods for cytotoxicity; 2.2.1
- International Standards Organization (ISO) 10993; 2.2.2
- ISO 10993-12 Control Selection and Material Preparation; 2.2.3
- L929 Murine Fibroblastoma Cell Culture Protocol; 2.2.4
- ISO 10993-5 Extract and Direct Contact Methods; 2.2.5
- Results and Discussions; 2.2.6
- A Need for More Efficient Methodologies
- 2.3
- Improved ISO 10993: the BAMBI method2.3.1
- BAMBI Methodology; 2.3.2
- BAMBI Method Results; 2.4
- 3C-SiC in vitro evaluation; 2.4.1
- The Advantages of 3C-SiC for Biomedical Devices; 2.4.2
- Materials and Methods; 2.4.3
- The BAMBI Method Cytotoxicity Testing Evaluation of 3C-SiC; 2.5
- Summary and the future of 3C-SiC biomedical testing; Acknowledgments; References; Chapter 3
- Study of the Hemocompatibility of 3C-SiC and a-SiC Films Using ISO 10993-4; 3.1
- Introduction; 3.2
- In vitro biomedical testing methods for cytotoxicity; 3.2.1
- Testing Materials; 3.2.1.1
- (100) Silicon
- 3.2.1.2
- Cubic Silicon Carbide3.2.1.3
- Amorphous Silicon Carbide; 3.2.2
- In vitro BAMBI Cytotoxicity Assay for a-SiC; 3.3
- In vitro assay to assess hemocompatibility of SiC; 3.3.1
- Hemocompatibility; 3.3.2
- ISO 10993-4 Hemocompatibility Evaluation of SiC; 3.3.2.1
- Chandler's Loop; 3.3.2.2
- Platelet-Rich Plasma Preparation; 3.3.3
- Static Hemocompatibility of SiC; 3.3.4
- Dynamic Hemocompatibility of SiC; 3.4
- Summary; Acknowledgments; References; Chapter 4
- Graphene Functionalization for Biosensor Applications; 4.1
- Introduction; 4.2
- Production of graphene
- 4.2.1
- Mechanical Exfoliation of Graphite4.2.2
- Chemical Exfoliation; 4.2.3
- Supporting Substrates; 4.2.4
- Chemical Vapor Deposition; 4.2.5
- Metal Substrates; 4.2.5.1
- Growth on Copper; 4.2.5.2
- Roll-to-Roll Production; 4.2.5.3
- Growth on Nickel; 4.2.6
- CVD Growth on SiC; 4.2.7
- Epitaxial Growth on Silicon Carbide; 4.2.7.1
- Si- and C-Face Growth; 4.2.7.2
- Related Growth Techniques on SiC; 4.3
- Graphene characterization methods; 4.3.1
- Raman Spectroscopy; 4.3.2
- XPS; 4.3.3
- Electrical Characterization; 4.3.4
- Electrochemical Characterization (Electrochemistry Techniques)
- 4.3.4.1
- Amperometry