Nanobiomaterials in antimicrobial therapy : applications of nanobiomaterials /
Nanobiomaterials in Antimicrobial Therapy presents novel antimicrobial approaches that enable nanotechnology to be used effectively in the treatment of infections. This field has gained a large amount of interest over the last decade, in response to the high resistance of pathogens to antibiotics. L...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Kidlington, Oxford, UK :
William Andrew is an imprint of Elsevier,
2016.
|
Colección: | Applications of nanobiomaterials ;
volume 6. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Nanobiomaterials in Antimicrobial Therapy; Copyright Page; Contents; List of contributors; Preface of the series; Preface; About the Series (Volumes I-XI); About Volume VI; 1 Antimicrobial photoinactivation with functionalized fullerenes; 1.1 Introduction; 1.2 Photosensitizers; 1.3 Photochemistry of PDT; 1.4 Fullerenes Acting as Photosensitizers; 1.5 Biocompatibility of Fullerenes; 1.6 Chemical Design of Fullerene Derivatives; 1.6.1 Examples of the Synthesis of Mono- and Polycationic Fullerene Derivatives; 1.6.2 Synthesis of Hexa-Anionic Fullerene Derivatives.
- 1.6.3 Synthesis of Chromophore-Linked Fullerene Derivatives1.7 Photochemical and Photophysical Properties of Fullerenyl Molecular Micelles and Chromophore-Fullerene Conjugates; 1.8 Fullerenes for Antimicrobial Inactivation; 1.9 Conclusions; Acknowledgments; References; 2 Toxicity of inorganic nanoparticles against prokaryotic cells; 2.1 Introduction; 2.2 Inorganic Nanoarchitectonics with Anti-Infective Potential; 2.2.1 Unmodified Nanomaterials with Natural Antimicrobial Activity; 2.2.1.1 Silver nanoparticles; 2.2.1.1.1 Cytotoxicity; 2.2.1.1.2 Clinical studies; 2.2.1.2 Selenium nanoparticles.
- 2.2.1.2.1 Toxicity2.2.1.3 Copper nanoparticles; 2.2.1.3.1 Cytotoxicity; 2.2.1.4 Titanium dioxide nanoparticles; 2.2.1.4.1 Cytotoxicity; 2.2.1.5 ZnO nanoparticles; 2.2.2 Modified Nanomaterials with Antimicrobial Activity; 2.2.2.1 Phytochemical-Modified Nanomaterials; 2.2.2.2 Peptide- modified nanomaterials; 2.2.2.3 Nanomaterials Modified with Commercial Antibiotics; 2.3 Conclusions and Perspectives; References; 3 Antimicrobial magnetosomes for topical antimicrobial therapy; 3.1 Introduction; 3.1.1 Biosynthesis of Magnetic Particles; 3.1.1.1 Biologically induced mineralization.
- 3.1.1.2 Biologically controlled biomineralization3.1.1.2.1 Magnetite in eukaryotic microbes; 3.1.1.3 Magnetotactic bacteria; 3.1.1.4 Characteristics and attributes of magnetosomes; 3.1.1.4.1 Attributes of magnetosomes; 3.1.1.5 Steps involved in magnetosome formation; 3.1.1.6 Functionalization of magnetosomes; 3.1.1.7 Biochemical characteristics of magnetosome membrane; 3.1.1.8 Extraction and purification of magnetosomes for antimicrobial activity; 3.1.1.9 Surface modification of magnetosomes; 3.1.1.10 Applications of magnetosomes; 3.1.2 Green Synthesis of Magnetic Nanoparticles.
- 3.1.2.1 Extracellular synthesis of iron oxide particles3.2 Biofilm Formation; 3.2.1 Characteristics of Biofilm in Medical Devices; 3.2.2 Bacterial Biofilm in Diseases; 3.2.3 Structure of Bacterial Biofilm; 3.2.3.1 Genomics and proteomics of biofilm formation in Gram-negative bacteria; 3.2.3.2 Structure of Gram-negative cell wall; 3.2.4 Candida albicans and Biofilm; 3.2.4.1 Mechanism of drug resistance; 3.2.5 Failure of Antibiotics to Penetrate Biofilm; 3.3 Nanobiomaterials Against Biofilm Formation; 3.3.1 Mechanism of Toxicity of Nanoparticles; 3.3.1.1 Intracellular toxicity.