|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
SCIDIR_ocn942975619 |
003 |
OCoLC |
005 |
20231120112057.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
160304s2016 ne ob 001 0 eng d |
010 |
|
|
|a 2015960574
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d YDXCP
|d N$T
|d OPELS
|d EBLCP
|d OCLCF
|d IDEBK
|d DEBSZ
|d Z5A
|d VGM
|d OCLCQ
|d U3W
|d D6H
|d AU@
|d WYU
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1066620732
|a 1235843612
|
020 |
|
|
|a 9780128039366
|q electronic bk.
|
020 |
|
|
|a 0128039361
|q electronic bk.
|
020 |
|
|
|z 9780128038949
|
020 |
|
|
|z 0128038942
|
035 |
|
|
|a (OCoLC)942975619
|z (OCoLC)1066620732
|z (OCoLC)1235843612
|
050 |
|
4 |
|a TK7876
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.381/32
|2 23
|
100 |
1 |
|
|a Raffo, Antonio,
|e author.
|
245 |
1 |
0 |
|a Microwave wireless communications :
|b from transistor to system level /
|c Antonio Raffo, Giovanni Crupi.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed March 15, 2016)
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover -- Microwave Wireless Communications: From Transistor to System Level -- Copyright -- Dedication -- Contents -- Contributors -- About the Editors -- Foreword by Charles F. Campbell -- Foreword by Ramesh K. Gupta -- Preface -- Chapter 1: Microwave transistor modeling -- 1.1. Introduction -- 1.2. Microwave Transistor Technologies -- 1.3. Transistor Modeling -- 1.4. Small-Signal Modeling -- 1.5. Noise Modeling -- 1.6. Large-Signal Modeling -- References -- Chapter 2: Radio frequency and microwave linear and nonlinear characterization -- 2.1. Introduction -- 2.2. The scattering parameters -- 2.3. Scattering parameter measurements -- 2.4. Two-Port VNAs -- 2.5. Downconversion techniques -- 2.6. Two-Port VNA calibration -- 2.7. Load- and source-pull characterization -- 2.7.1. Scalar Systems -- 2.7.2. Vectorial Systems -- 2.8. System-level characterization -- 2.8.1. Measurement System Synchronization -- References -- Chapter 3: Nonlinear analysis and design of oscillator circuits -- 3.1. Introduction -- 3.2. Basic Concepts in Oscillator Circuits -- 3.2.1. Oscillation Mechanism: Start-Up and Steady-State -- 3.2.2. Invariance Versus Phase Shifts -- 3.2.3. Impact of the Harmonic Content -- 3.2.4. Phase-Space Representation -- 3.3. Negative Resistance Through Gain and Feedback -- 3.4. General Stability Analysis of Oscillator Circuits -- 3.4.1. Stability of the dc Solution -- 3.4.2. Stability of the Periodic Oscillation -- 3.4.3. Approximate Stability Analysis of the Periodic Solution -- 3.5. Initial Linear Design to Fulfill the Oscillation Start-Up Conditions -- 3.6. Oscillator Design With Harmonic-Balance Simulations -- 3.6.1. Harmonic Balance -- 3.6.2. Use of an Auxiliary Generator for Oscillator Analysis and Synthesis -- 3.7. Stability Analysis -- 3.7.1. Local Stability Analysis -- 3.7.2. Bifurcations -- 3.7.2.1. Bifurcation from a dc solution.
|
505 |
8 |
|
|a 3.7.2.2. Bifurcations from a periodic solution -- Turning point -- Hopf bifurcation -- Flip bifurcation -- 3.8. Phase Noise -- 3.8.1. Frequency-Domain Techniques -- 3.8.2. Phase-Noise Dynamics -- 3.8.3. Conversion Matrix Approach -- 3.8.4. Carrier-Modulation Approach -- 3.8.5. Near Carrier Spectrum Due to Phase Noise -- 3.8.6. Application Example -- 3.9. Reduced-Order Models for Oscillator Circuits -- 3.9.1. Inner Level -- 3.9.2. Outer Level -- 3.10. Phase-Locked Loops -- 3.10.1. VCO Formulation -- 3.10.2. PLL Formulation -- 3.10.3. Application Example -- References -- Chapter 4: Microwave power amplifiers: Design and technology -- 4.1. Introduction -- 4.2. Device Characteristics and Power Match Condition -- 4.3. Power Amplifier Figure of Merits -- 4.4. Design Strategies for High-Efficiency PAs -- 4.4.1. Tuned Load -- 4.4.2. Ideal Class F or Inverse Class F (Class F-1) -- 4.4.3. Ideal Class E -- 4.4.4. High-Frequency HT Approaches -- 4.5. Technologies for PAs Realization -- 4.5.1. Semiconductor Technologies for PAs -- 4.5.2. Hybrid Microwave PAs -- 4.5.3. Microwave Monolithic PAs -- 4.6. Linearity Issues -- 4.6.1. Systems Classification (Memoryless vs. Memory PA) -- 4.6.2. Influence of Bias Point -- 4.6.3. Influence of Harmonic Loadings -- 4.7. PA Solutions for Communication Systems: The Doherty Example -- 4.8. Analysis Issues -- References -- Chapter 5: Technology design interaction: System driven technology choices -- 5.1. Introduction -- 5.1.1. System Architecture Selection -- 5.1.2. Battery Voltage Considerations -- 5.1.3. Mid- and Low-Power Efficiency Considerations -- 5.1.4. Considerations for Average Power Tracking and ET -- 5.1.5. Multimode, Multiband PAs -- 5.1.6. Wireless LAN Amplifiers -- 5.2. Technology selection and characterization -- 5.2.1. How Do We Pick a Technology? -- 5.2.2. Overall Process Features.
|
505 |
8 |
|
|a 5.2.3. Passive and Active Device Concerns -- 5.2.3.1. Capacitors -- 5.2.3.2. Resistors -- 5.2.3.3. Inductor-like devices -- 5.2.3.4. Backside via (BSV) and metallization -- 5.2.4. Device Characterization for Process Selection -- 5.3. Figure of Merit, Yield, and Cost -- 5.4. Circuit Level Design -- 5.4.1. Getting Started and Floor Planning -- 5.4.2. Packaging and System Level Impacts -- 5.5. Large-Signal Modeling and Validation at the Circuit Level -- References -- Chapter 6: Radio frequency power amplifier for wireless communication -- 6.1. Introduction -- 6.2. PA Specification -- 6.2.1. PA Output -- 6.2.2. Efficiency -- 6.2.3. Linearity -- 6.2.4. Video Bandwidth -- 6.3. PA topologies for wireless communication -- 6.3.1. Doherty PA -- 6.3.1.1. Doherty operation principle -- 6.3.1.2. Asymmetric Doherty PA -- 6.3.1.3. Digital Doherty PA -- 6.3.1.4. Broadband Doherty PA -- 6.3.2. ET PA -- 6.3.2.1. EER and ET -- 6.3.2.2. RF PA for ET -- 6.3.2.3. Supply modulator for ET -- 6.3.3. LINC PA -- 6.3.3.1. LINC principle -- 6.3.3.2. Combining structures for LINC -- 6.3.3.3. Multilevel LINC -- 6.3.3.4. Mode-multiplexing LINC -- 6.3.3.5. Power recycling LINC -- 6.4. Transistor technology for PA design -- 6.4.1. Silicon CMOS Technologies -- 6.4.2. The GaAs HBT -- 6.4.3. The GaN High Electron-Mobility Transistor -- 6.5. Broadband and multiband PA -- 6.5.1. Broadband PA Design -- 6.5.1.1. Broadband impedance matching networks -- 6.5.1.2. Broadband bias networks -- 6.5.2. Multiband PA Design -- 6.5.2.1. Multiband PAs -- 6.5.2.2. Analysis of concurrent multiband PAs -- 6.5.2.3. Intermodulation impedance matching -- References -- Chapter 7: Nonlinear applications at the transmitter system level -- 7.1. Introduction -- 7.2. Power Dissipation Versus Linearity -- 7.2.1. Power Along the Characteristic Curves -- 7.2.2. Knee Voltage Profiles.
|
505 |
8 |
|
|a 7.2.3. Load Line Selection for Efficiency -- 7.2.4. Variable Power Supply Option -- 7.3. PA Operating Modes With a Variable Supply Voltage -- 7.3.1. Booth Chart Fundamentals -- 7.3.2. L-Mode Operation -- 7.3.3. C-Mode Operation -- 7.3.4. P-Mode Operation -- 7.4. Signal Linearity and Accuracy Requirements -- 7.5. DPS Transmitter Principles -- 7.5.1. ET: L-Mode Only -- 7.5.2. DPS Characterization -- 7.5.3. Polar Modulation: C-Mode and P-Mode Only -- 7.5.4. Transistor Types With Best Performance -- References -- Chapter 8: System-level nonideality characterization for compensation -- 8.1. Introduction -- 8.2. Baseband Characterization and Modeling -- 8.3. System-Level Nonideality -- 8.3.1. Nonlinearity -- 8.3.1.1. Nonlinearity in baseband -- 8.3.1.2. Weak versus hard nonlinearity -- 8.3.1.3. Harmonic generation and intermodulation -- 8.3.2. Memory Effects -- 8.3.3. IQ Imbalance -- 8.4. Characterization Approaches -- 8.4.1. Memoryless Characterization -- 8.4.2. Quasimemoryless Characterization -- 8.4.3. Characterization With Volterra Models -- 8.4.3.1. Identification of volterra-based models -- 8.4.3.2. Effect of cross terms -- 8.4.3.3. Including even-order terms -- 8.4.4. Characterization With Various Excitations -- 8.4.4.1. Two-tone characterization -- 8.4.4.2. Multisine characterization -- 8.4.4.3. Characterization with real modulation -- 8.4.5. Characterization With X-Parameters -- 8.5. Characterization With Offset Multisine Excitation -- 8.5.1. Theory of Multisine Offsetting -- 8.5.2. Spectrum Plots With Offset Multisine Excitation -- 8.5.3. IM3 Profile -- 8.5.4. Focused Application: Memory Effects Characterization -- 8.6. Characterization and Modeling of Transmitter Emission Into Receive Band -- 8.6.1. Measuring the Deterministic Components of RxBN -- 8.6.2. Identification of Nonlinearity Orders -- 8.6.3. Modeling of Deterministic RxBN.
|
505 |
8 |
|
|a 8.7. From Characterization to System-Level Compensation -- References -- Index -- Back Cover.
|
650 |
|
0 |
|a Microwave circuits.
|
650 |
|
0 |
|a Wireless communication systems.
|
650 |
|
6 |
|a Circuits pour micro-ondes.
|0 (CaQQLa)201-0056784
|
650 |
|
6 |
|a Transmission sans fil.
|0 (CaQQLa)201-0253107
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING / Mechanical
|2 bisacsh
|
650 |
|
7 |
|a Microwave circuits
|2 fast
|0 (OCoLC)fst01020171
|
650 |
|
7 |
|a Wireless communication systems
|2 fast
|0 (OCoLC)fst01176209
|
700 |
1 |
|
|a Crupi, Giovanni,
|e author.
|
776 |
0 |
8 |
|i Erscheint auch als:
|n Druck-Ausgabe
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128038949
|z Texto completo
|