Cargando…

Spectral methods in transition metal complexes /

Spectral Methods in Transition Metal Complexes provides a conceptual understanding on how to interpret the optical UV-vis, vibrational EPR, and NMR spectroscopy of transition metal complexes. Metal complexes have broad applications across chemistry in the areas of drug discovery, such as anticancer...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sridharan, K. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2016]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Spectral Methods in Transition Metal Complexes
  • Copyright
  • Contents
  • List of Figures
  • List of Tables
  • Preface
  • Acknowledgments
  • Chapter 1: The Electromagnetic Spectrum
  • 1.1 Transition Metal Complexes
  • 1.2 Electromagnetic Spectrum
  • 1.2.1 Relation Between Frequency and Wavelength
  • Wavelength
  • 1.3 Regions of the Electromagnetic Spectrum
  • 1.4 Effect of Electromagnetic Radiation on Matter
  • 1.4.1?-Rays
  • 1.4.2 X-Rays
  • 1.4.3 Ultraviolet and Visible (UV-Vis) Radiation
  • 1.4.4 IR Radiation
  • 1.4.5 Microwave Radiation
  • 1.4.6 Nuclear Magnetic Resonance
  • 1.4.7 Electron Paramagnetic Resonance
  • 1.5 Summary
  • 1.5.1 IR and Complexes
  • 1.5.2 Electronic Spectra and Complexes
  • 1.5.3 NMR and Complexes
  • 1.5.4 EPR and Complexes
  • References
  • Chapter 2: Electronic Spectroscopy
  • 2.1 Symmetry, Symmetry Elements, and Symmetry Operations
  • 2.1.1 Symmetry
  • 2.1.2 Symmetry Elements
  • 2.1.3 Symmetry Operation
  • Definition of Symmetry Elements
  • 1.2.1 Principal or Proper Axis of Symmetry, Cn
  • C2 Axis of Symmetry
  • C3 Axis of Symmetry
  • C4 Axis of Symmetry
  • C6 Axis of Symmetry
  • Plane of Symmetry,?
  • Vertical Mirror Plane,?v
  • Horizontal Mirror Plane,?h
  • Dihedral Plane,?d
  • Center of Symmetry, i
  • Improper Axis of Symmetry, Sn
  • 2.2 Important Geometries of Complexes
  • 2.2.1 Octahedral Complex
  • 2.2.2 Square Planar Complex
  • 2.2.3 Tetrahedral Complex
  • 2.3 Term Symbols
  • 2.3.1 Terms
  • Electron Repulsion Parameters
  • 2.3.2 Spin-Orbit Coupling
  • Types of Spin-Orbit Coupling
  • RS Coupling Scheme
  • jj Coupling
  • Spin-Orbit Coupling Parameters
  • Parameter?
  • Parameter?
  • 2.3.3 States
  • Specification of a State
  • Normal and Inverted Multiplets
  • Derivation of?
  • 2.3.4 Microstates
  • 2.3.5 Derivation of Term Symbols
  • Determination of Maximum ML Value
  • Possible ML Values.
  • Possible MS Values
  • 2.4 Selection Rules
  • Transition Moment Integral, Q
  • Components of the Wave Function
  • Spin Selection Rule
  • Laporte Selection Rule
  • 2.4.1 Group Theory and Selection Rules
  • Direct Product Concept
  • Radius Vector, r
  • Reduction of the Reducible Representation
  • Forbidden in Oh but Allowed in Td
  • 2.4.2 Breakdown of Selection Rules
  • Spin-Selection Rule Breakdown
  • What Is Spin-Orbit Coupling?
  • Spin-Orbit Coupling of A and E Terms
  • Spin-Orbit Coupling of the T Term
  • Mixing of States and Effect of Spin-Orbit Coupling
  • Laporte Selection Rule Breakdown
  • Vibronic Coupling
  • Intensity Stealing
  • Reduction of Symmetry
  • 2.5 Prediction and Assignment of Transitions
  • 2.5.1 Orgel Diagram
  • Limitations of the Orgel Diagram
  • 2.5.2 Configuration, Free-Ion Term, Ground, and ExcitedTerms in a Weak Octahedral Field
  • Hole Formalism
  • Advantage of Hole Formalism
  • 2.5.3 Splitting of d-Orbitals in Different Geometries
  • 2.5.4 Free Ions in Medium and Strong Crystal Fields
  • Strong-Field Configurations
  • 2.5.5 Weak to Strong-Field Transition
  • Free-Ion Terms and Cubic Terms
  • 2.5.6 Terms Arising From a Strong-Field Configuration
  • d1 System
  • d2 System
  • t2g2 System
  • t2g1eg1 System
  • Lowest Term of a Strong-Field Configuration
  • eg2 Configuration
  • d3 Strong-Field Configuration
  • Strong and Weak-Field Cases: Difference
  • Weak-Field Case
  • Strong-Field Case
  • Noncrossing Rule
  • 2.5.7 Tanabe-Sugano Diagrams
  • 2.6 Band Intensities, Band Widths, and Band Shapes
  • 2.6.1 Band Intensities
  • 2.6.2 Band Widths
  • Vibration and Band Width
  • Spin-Orbit Coupling and Band Width
  • Jahn-Teller Effect and Band Width
  • CT Bands and Band Width
  • 2.6.3 Band Shapes
  • Vibrational Interaction and Band Shape
  • Spin-Orbit Coupling and Band Shape
  • Lowering of Symmetry
  • 2.7 Complexes and Color.
  • 2.8 Electronic Spectra of Individual Ions
  • 2.8.1 Electronic Spectrum of a d1 System
  • 2.8.2 Electronic Spectrum of a d9 System
  • 2.8.3 Electronic Spectrum of a d2 System
  • 2.8.4 Electronic Spectrum of a d8 System
  • 2.8.5 Electronic Spectrum of a d3 System
  • 2.8.6 Electronic Spectrum of a d7 System
  • 2.8.7 Electronic Spectrum of a d4 System
  • 2.8.8 Electronic Spectrum of a d6 System
  • 2.8.9 Electronic Spectrum of a d5 System
  • 2.9 Cis- and Trans-Complexes
  • 2.10 Rule of Average Environment
  • 2.11 Nephelauxetic Effect
  • 2.12 Spectra of Tetrahedral Complexes
  • 2.13 CT Spectra (Charge Transfer)
  • 2.13.1 How to Distinguish Between CT and d-d Transitions
  • 2.13.2 Types of CT Transitions
  • LMCT Transition
  • MLCT Transition
  • References
  • Chapter 3: IR Spectroscopy
  • 3.1 Some Fundamentals
  • 3.1.1 Fundamental Vibrations or Normal Vibrations
  • Nonlinear Molecules
  • Linear Molecules
  • 3.1.2 Overtone and Combination Bands
  • Overtones
  • Combination Bands
  • Difference Bands
  • 3.2 Selection Rule for IR Spectra
  • 3.3 Selection Rule for Raman Spectra
  • 3.4 Rule of Mutual Exclusion
  • 3.5 IR Spectra and Inorganic Compounds
  • 3.5.1 SALC and Prediction of IR- and Raman-Active Bands
  • 3.5.2 What Is SALC and Why Is It Necessary?
  • Methods to Obtain SALCs
  • Basis Vector Method
  • Constructing SALCs
  • 3.5.3 Choosing the Basis Set and Linear Combination
  • 3.5.4 Expression for SALCs
  • 3.5.5 Normalization
  • Projection Operator Method
  • 3.5.6 Transformations of the Basis Vectors
  • 3.5.7 SALC Functions and Basis Sets
  • 3.5.8 Normalization
  • 3.5.9 Interpretation of SALCs
  • 3.5.10 Applications
  • Examples
  • Derivation of the Point Group of trans-N2F2
  • C2h Character Table
  • Derivation of the Reducible Representation
  • Identity Operation, E
  • C2 Operation
  • i Operation
  • ?h Operation
  • Reducible Representation.
  • Obtaining the Irreducible Representation
  • Interpretation of the Result
  • Number of IR- and Raman-Active Vibrations
  • IR-Active Vibrations
  • Raman-Active Vibrations
  • 3.5.11 Interpretation of IR Spectra
  • 3.6 IR Spectra and Complexes
  • 3.7 Coordination and Ligand Vibrations
  • 3.7.1 Nitrato Ligand, NO3-
  • 3.7.2 Carboxylate Ion
  • 3.7.3 Sulfate Ion
  • 3.7.4 N, N-Dimethylacetamide
  • 3.7.5 Cyano Complexes
  • Factors Affecting?CN
  • Effect of Electronegativity
  • Effect of Oxidation State
  • Effect of Coordination Number
  • 3.7.6 Dimethyl Sulfoxide Complexes
  • 3.7.7 Metal Carbonyls
  • Terminal and Bridging Carbonyls
  • Structure of Metal Carbonyls
  • Mononuclear Carbonyls
  • Polynuclear Carbonyls
  • 3.8 Isotopic Substitution and Application
  • References
  • Chapter 4: EPR Spectroscopy
  • 4.1 Principle of EPR Spectroscopy
  • 4.1.1 Derivative Curves
  • 4.1.2 Fine Splitting
  • 4.1.3 Hyperfine Splitting
  • Explanation
  • Energy of Levels
  • Characteristics of A
  • Selection Rules
  • How Many Lines?
  • Hyperfine Splittings in Various Structures
  • 4.2 g-Values in Different Environments
  • 4.2.1 Solid-State and Frozen Solutions
  • g�"and gll
  • gxx, gyy, and gzz
  • 4.2.2 Characteristics of g
  • Factors Affecting the Magnitudes of g-Values
  • 4.3 Zero-Field Splitting and Kramer's Degeneracy
  • 4.3.1 Zero-Field Splitting
  • 4.3.2 Kramer's Degeneracy
  • Separation Between Lines and?
  • 4.3.3 Magnitude of Zero-Field Splitting and Signal
  • 4.4 Effective Spin, S'
  • Explanation
  • 4.5 Mixing of States and Zero-Field Splitting
  • Explanation
  • 4.6 Anisotropy in Hyperfine Coupling Constant
  • 4.7 Line Widths in Solid-State EPR
  • 4.7.1 Spin-Lattice Relaxation
  • 4.7.2 Spin-Spin Relaxation
  • 4.7.3 Spin Exchange Processes
  • Exchange Between Similar or Equivalent Ions
  • Exchange Between Dissimilar Ions
  • 4.8 Applications of EPR
  • Discussion.
  • 4.9 g-Values for Different Ground Terms
  • Tg Ground Terms
  • 4.10 g-Value and Structure
  • Ground State in Elongation and Compression in Tetragonal Distortion
  • Elongation
  • Compression
  • g-Value and Ground State
  • 4.10.1 Magic Pentagon
  • 4.11 g-Value and Square Planar Structure
  • 4.12 g-Value and Covalent Character
  • 4.13 All and Structure
  • 4.14 G-Factor and Nature of the Ligand
  • 4.15. EPR Spectra of dn Systems
  • 4.15.1 d1 System
  • Octahedral Field
  • Tetrahedral Field
  • Studying the Spectrum
  • 4.15.2 d2 System
  • Octahedral Field
  • Tetrahedral Field
  • Examples
  • 4.15.3 d3 System
  • Octahedral Field
  • Examples
  • 4.15.4 d4 System
  • Octahedral Field
  • 4.15.5 d5 System
  • Strong-Field (Low-Spin) Oh S = 1/2
  • Weak-Field, High-Spin Case, S = 5/2
  • Fe(III) Complexes
  • Undistorted Octahedral Complexes
  • Slightly Distorted Fe(III) Complexes
  • Highly Distorted Fe(III) Complex
  • 4.15.6 d6 System
  • 4.15.7 d7 System
  • Octahedral Symmetry
  • Tetrahedral Symmetry
  • 4.15.8 d8 High-Spin System
  • 4.15.9 d9 System
  • Octahedral Field
  • References
  • Chapter 5: NMR Spectroscopy
  • 5.1 Principles of NMR
  • 5.1.1 Precessional Motion or Larmor Precession
  • 5.1.2 Precessional Frequency,?
  • 5.1.3 Energy Levels and Transition
  • Resonance
  • Field Sweep and Frequency Sweep Methods
  • Relation Between? and?
  • 5.2 Ground and Excited State Population
  • 5.3 Relaxation of the Nuclei
  • Mechanism of Relaxation
  • 5.4 Spin-Lattice Relaxation (T1)
  • 5.5 Spin-Spin Relaxation (T2)
  • 5.6 Comparison of Relaxation Times
  • 5.7 Width of NMR Lines
  • Explanation
  • 5.8 Basic Types of Information From NMR
  • 5.8.1 Chemical Shift
  • Origin of Chemical Shift
  • Applied and Effective Magnetic Field
  • Factors Affecting Chemical Shift
  • Electronegativity and Chemical Shift
  • van der Waals Deshielding
  • Anisotropic Effect and Chemical Shift.