Cargando…

Stress corrosion cracking of nickel-based alloys in water-cooled nuclear reactors : the coriou effect /

Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors: The Coriou Effect presents the latest information on brittle failure of metals in corrosive chemical environments under the influence of tensile stresses. Nickel alloys are more resistant to SCC as well as high temper...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: F�eron, D. (Editor ), Staehle, R. W., 1934-2017 (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford, UK : Elsevier, Woodhead Publishing, [2016]
Colección:Woodhead Publishing series in EFC ; no. 67.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Related titles; Stress Corrosion Cracking of Nickel-based Alloys in Water-cooled Nuclear Reactors; Copyright; Contents; List of contributors; Woodhead Publishing Series in EFC; Preface; One
  • Historical perspectives onstress corrosion cracking ofnickel-based alloys; 1
  • Historical views on stress corrosion cracking of nickel-based alloys: the Coriou effect; Disclaimer; 1.1 Introduction; 1.1.1 The essence of the story; 1.1.2 Personal backgrounds (Coriou, Copson, Rickover); 1.1.2.1 Henri Coriou; 1.1.2.2 Harry Copson; 1.1.2.3 Hyman G. Rickover.
  • 1.1.3 Beginnings of experiments for SCC1.1.4 Significance of early testing; 1.1.5 PWR system conditions, materials, and degradation; 1.1.5.1 Introduction; 1.1.5.2 Materials; 1.1.5.3 Bulk chemical environments; Primary bulk environment; Secondary bulk environment; 1.1.5.4 Local superheat condition; 1.1.5.5 Corrosion product expansion; 1.1.5.6 Temperature; 1.1.5.7 Stress; 1.2 Early nuclear ships and SCC; 1.2.1 Introduction; 1.2.2 Main early events; 1.2.2.1 Fermi and the pile; 1.2.2.2 Nautilus prototype and stress corrosion cracking; 1.2.2.3 The Nautilus and stress corrosion cracking.
  • 1.2.2.4 Shippingport and stress corrosion cracking1.2.2.5 Fossil and nuclear differences; 1.2.3 Corrosion and Wear Handbook; 1.3 Principles and occurrences of corrosion; 1.3.1 Introduction; 1.3.2 Design/materials/operation/degradation: framework of Coriou; 1.3.3 Rickover: principles; 1.3.4 Early beliefs about the occurrence of SCC; 1.3.5 Principles of corrosion; 1.3.6 Corrosion testing; 1.3.7 Initiation and propagation; 1.3.8 Failure at Duane Arnold; 1.3.9 Extent of SCC in Alloy 600: modes and submodes; 1.3.10 Failures of Alloy 600.
  • 1.4 Coriou and the Commissariat �a l'�Energie Atomique, 1955-19751.4.1 Introduction; 1.4.2 Pure deoxygenated water; 1.4.3 Chloride in pure deoxygenated water; 1.4.4 High-temperature steam; 1.4.5 Electrochemical potential; 1.4.6 Alkaline stress corrosion cracking; 1.4.7 Boiling MgCl2; 1.4.8 Temperature; 1.4.9 Stress and plastic strain; 1.4.10 Heat treatments: sensitization and thermal treatment; 1.4.11 Other work in support of Coriou; 1.4.11.1 Introduction; 1.4.12 Coriou's monitoring failures at early plants throughout the world; 1.4.13 Criticisms of Coriou; 1.4.14 Overview.
  • 1.5 Copson and INCO: 1955-19751.5.1 Introduction; 1.5.2 1956-1961: the early Navy SCC problem; 1.5.3 1961-1968: the fruitless impurity cause for Coriou's SCC; 1.5.4 1968-1975: the development of alloy 690; 1.6 The lead story; 1.6.1 Introduction; 1.6.2 Coriou's rebuttal; 1.6.3 A brief history of lead-induced events; 1.6.4 Properties; 1.6.5 Overview of Pb work; 1.7 Conclusions; Acknowledgments; References; 2
  • The saga of Alloy 600 at the Commissariat �a l'�Energie Atomique; 2.1 Introduction; 2.2 Some benchmarks; 2.3 The use of Alloy 600.