|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_ocn932289266 |
003 |
OCoLC |
005 |
20231120112043.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
151216s2016 ne ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d N$T
|d YDXCP
|d OCLCF
|d CDX
|d OPELS
|d B24X7
|d STF
|d DEBSZ
|d AU@
|d OCLCQ
|d D6H
|d LIV
|d OCLCQ
|d U3W
|d WRM
|d COO
|d OCLCQ
|d LQU
|d SNM
|d BRF
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 956740331
|a 1105183491
|a 1105570580
|
020 |
|
|
|a 9780128053355
|q (electronic bk.)
|
020 |
|
|
|a 0128053356
|q (electronic bk.)
|
020 |
|
|
|z 9780128051856
|
035 |
|
|
|a (OCoLC)932289266
|z (OCoLC)956740331
|z (OCoLC)1105183491
|z (OCoLC)1105570580
|
050 |
|
4 |
|a QA76.9.D37
|b H37 2016
|
072 |
|
7 |
|a COM
|x 021030
|2 bisacsh
|
082 |
0 |
4 |
|a 005.74
|2 23
|
100 |
1 |
|
|a Haq, Qazi Muhammad Rashid Ul,
|e author.
|
245 |
1 |
0 |
|a Data mapping for data warehouse design /
|c Qamar Shahbaz Ul Haq.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c [2016]
|
264 |
|
4 |
|c �2016
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed December 18, 2015).
|
504 |
|
|
|a Includes bibliographical references.
|
520 |
|
|
|a Data mapping in data warehouse lifecycle is the process of creating a link between two distinct data models' (source and target) tables/attributes. It is required at many stages of DW life-cycle to transform data from one state to another; every stage has its own unique requirements and challenges. This book provides basic and advanced knowledge about data mapping/data transformation. It contains real life scenarios that readers face and presents solutions/standard techniques across various domains. --
|c Edited summary from book.
|
505 |
0 |
|
|a Front Cover -- Data Mapping for Data Warehouse Design -- Copyright Page -- Dedication -- Contents -- 1 Introduction -- Definition -- 2 Data Mapping Stages -- Mapping from the Source to the Data Warehouse Landing Area -- Mapping from the Landing Area to the Staging Database -- Mapping from the Staging Database to the Load Ready or Target Database -- Mapping from Logical Data Model to the Semantic or Access Layer -- 3 Data Mapping Types -- Logical Data Mapping -- Physical Data Mapping -- 4 Data Models -- Definition -- Entity -- Relationship -- Attributes -- Normalized Data Model.
|
505 |
8 |
|
|a First Normal Form -- Second Normal Form -- Third Normal Form -- Dimensional Data Model -- Fact -- Dimension -- Measure -- Drill-Down and Roll-Up -- Star Schema -- Fact Tables -- Dimension Tables -- 5 Data Mapper's Strategy and Focus -- Mapper Who? How Does He or She Do It? -- 6 Uniqueness of Attributes and its Importance -- Telecom -- Manufacturing -- Finance -- Uniqueness in Data Warehouse -- 7 Prerequisites of Data Mapping -- Logical Data Model -- Entities and Their Description -- Attributes and Their Description -- Primary Key of Entities -- Relationship Between Entities.
|
505 |
8 |
|
|a Cardinality of the Relationship -- Change Capture Column of History-Handled Entities -- Physical Data Model -- Source System Data Model -- Source System Table and Attribute Details -- Subject Matter Expert -- Production Quality Data -- 8 Surrogate Keys versus Natural Keys -- Natural Keys -- Surrogate Keys -- 9 Data Mapping Document Format -- Header-Level Rules -- Column-Level Rules -- Major Parts of the Data Mapping Document -- Data Mapping Columns Explained -- Change Date -- Subject Area -- Target Table Name -- Target Column Name -- Data Type -- PK -- Nullable -- Source System -- Record ID.
|
505 |
8 |
|
|a Source Table Name -- Source Column Name -- Data Type of Source Column -- Transformation Category -- Transformation Rule -- Updated By -- Mapping Priority or Sequence -- 10 Data Analysis Techniques -- Source Data Sample -- Direct Access -- Extraction from a Source -- Data Files -- What to Look For -- High-Level Inter-Source System Relationship -- Intra-Source System Table-Level Analysis -- Column-Level Analysis -- Uniqueness -- Full Row Duplicates -- Primary Key Duplicates -- Multiple Extracts -- Source System Updates -- History Pattern Analysis -- Type 0 -- Type 1 -- Type 2 -- Type 3 -- Type 4.
|
505 |
8 |
|
|a Type 6 -- Temporal Database -- Transaction Time -- Definition -- Limitations -- Valid Time -- Definition -- Limitations -- History Data Verification -- SQL Tools -- Automatic Query Generators -- Aggregate Functions -- Window and Rank Functions -- Microsoft Excel and Other Tools -- Remove Duplicates -- Sort -- Pivot Tables -- 11 Data Quality -- What Is Data Quality? -- How Do You Benefit from Data Quality? -- Factors Determining Data Quality -- Accurate Data -- Complete Data -- Legible Data -- Relevant Data -- Reliable Data -- Timely Data -- Valid Data.
|
650 |
|
0 |
|a Data warehousing.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Data Mining
|0 (DNLM)D057225
|
650 |
|
6 |
|a Entrep�ots de donn�ees (Informatique)
|0 (CaQQLa)201-0300302
|
650 |
|
6 |
|a Exploration de donn�ees (Informatique)
|0 (CaQQLa)201-0300292
|
650 |
|
7 |
|a COMPUTERS
|x Databases
|x Data Mining.
|2 bisacsh
|
650 |
|
7 |
|a Data mining.
|2 fast
|0 (OCoLC)fst00887946
|
650 |
|
7 |
|a Data warehousing.
|2 fast
|0 (OCoLC)fst00888026
|
776 |
0 |
8 |
|i Erscheint auch als:
|a Ul Haq, Qamar Shahbaz.
|t Data mapping for data warehouse design
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128051856
|z Texto completo
|